IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p1652-1659.html
   My bibliography  Save this article

Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea

Author

Listed:
  • Davy, Richard
  • Gnatiuk, Natalia
  • Pettersson, Lasse
  • Bobylev, Leonid

Abstract

We may anticipate that climate change will bring changes to the intensity and variability of near surface winds, either through local effects or by altering the large-scale flow. The impact of climate change on European wind resources has been assessed using a single-model-ensemble of the latest regional climate model from the Rossby Centre, RCA4. These simulations used data from five of the global climate models in the contemporary Climate Model Intercomparison Project (CMIP5) as boundary conditions, and the results are publicly available under the COordinated Regional climate Downscaling EXperiment (CORDEX) project. Overall we find a consistent pattern of a decrease in the wind resources over the European domain under both the RCP 4.5 and RCP 8.5 scenarios, although there are some regions, principally North Africa and the Barents Sea, with projected increases in wind resources. The pattern of change is both robust across the choice of scenario, and persistent: there is a very similar pattern of change found in the latter part of the 21st century as in the earlier. A case study was chosen to assess the potential for offshore wind-farms in the Black Sea region. We developed a realistic methodology for extrapolating near-surface wind speeds up to hub-height using a time-varying roughness length, and determined the extractable wind power at hub-height using a realistic model of contemporary wind-turbine energy production. We demonstrate that, unlike much of the Mediterranean basin, there is no robust pattern of a negative climate change impact on wind resources in the studied regions of the Black Sea. Furthermore, the seasonality of wind resources, with a strong peak in the winter, matches well to the seasonality of energy-demand in the region, making offshore wind-farms in the Black Sea region a viable source of energy for neighboring countries.

Suggested Citation

  • Davy, Richard & Gnatiuk, Natalia & Pettersson, Lasse & Bobylev, Leonid, 2018. "Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1652-1659.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:1652-1659
    DOI: 10.1016/j.rser.2017.05.253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Davy & Igor Esau, 2016. "Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    2. Balog, Irena & Ruti, Paolo M. & Tobin, Isabelle & Armenio, Vincenzo & Vautard, Robert, 2016. "A numerical approach for planning offshore wind farms from regional to local scales over the Mediterranean," Renewable Energy, Elsevier, vol. 85(C), pages 395-405.
    3. Sliz-Szkliniarz, Beata & Vogt, Joachim, 2011. "GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1696-1707, April.
    4. Mirhosseini, M. & Sharifi, F. & Sedaghat, A., 2011. "Assessing the wind energy potential locations in province of Semnan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 449-459, January.
    5. Scott D. Goddard & Marc G. Genton & Amanda S. Hering & Stephan R. Sain, 2015. "Evaluating the impacts of climate change on diurnal wind power cycles using multiple regional climate models," Environmetrics, John Wiley & Sons, Ltd., vol. 26(3), pages 192-201, May.
    6. Isabelle Tobin & Robert Vautard & Irena Balog & François-Marie Bréon & Sonia Jerez & Paolo Ruti & Françoise Thais & Mathieu Vrac & Pascal Yiou, 2015. "Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections," Climatic Change, Springer, vol. 128(1), pages 99-112, January.
    7. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soares, Pedro M.M. & Lima, Daniela C.A. & Cardoso, Rita M. & Nascimento, Manuel L. & Semedo, Alvaro, 2017. "Western Iberian offshore wind resources: More or less in a global warming climate?," Applied Energy, Elsevier, vol. 203(C), pages 72-90.
    2. Rusu, Eugen, 2020. "An evaluation of the wind energy dynamics in the Baltic Sea, past and future projections," Renewable Energy, Elsevier, vol. 160(C), pages 350-362.
    3. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    4. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "A techno-economic and environmental assessment of long-term energy policies and climate variability impact on the energy system," Energy Policy, Elsevier, vol. 128(C), pages 329-346.
    5. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    6. Bonjean Stanton, Muriel C. & Dessai, Suraje & Paavola, Jouni, 2016. "A systematic review of the impacts of climate variability and change on electricity systems in Europe," Energy, Elsevier, vol. 109(C), pages 1148-1159.
    7. Gass, Viktoria & Schmidt, Johannes & Strauss, Franziska & Schmid, Erwin, 2013. "Assessing the economic wind power potential in Austria," Energy Policy, Elsevier, vol. 53(C), pages 323-330.
    8. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    9. Keleş, S. & Bilgen, S., 2012. "Renewable energy sources in Turkey for climate change mitigation and energy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5199-5206.
    10. Philip Antwi-Agyei & Andrew J. Dougill & Lindsay C. Stringer, 2017. "Assessing Coherence between Sector Policies and Climate Compatible Development: Opportunities for Triple Wins," Sustainability, MDPI, vol. 9(11), pages 1-16, November.
    11. Hennessey, Ryan & Pittman, Jeremy & Morand, Annette & Douglas, Allan, 2017. "Co-benefits of integrating climate change adaptation and mitigation in the Canadian energy sector," Energy Policy, Elsevier, vol. 111(C), pages 214-221.
    12. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    14. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Techno-Economic Assessment of Wind Energy Potential at Three Locations in South Korea Using Long-Term Measured Wind Data," Energies, MDPI, vol. 10(9), pages 1-24, September.
    15. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    16. Leer, Donald & Chang, Byungik & Chen, Gerald & Carr, David & Starcher, Kenneth & Issa, Roy, 2013. "Windtane contour map of the state of Texas," Renewable Energy, Elsevier, vol. 58(C), pages 140-150.
    17. Gonçalves-Ageitos, María & Barrera-Escoda, Antoni & Baldasano, Jose M. & Cunillera, Jordi, 2015. "Modelling wind resources in climate change scenarios in complex terrains," Renewable Energy, Elsevier, vol. 76(C), pages 670-678.
    18. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    19. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    20. Lan-Cui Liu & Gang Wu, 2015. "Assessment of energy supply vulnerability between China and USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 127-138, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:1652-1659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.