IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v198y2020ics0360544220301894.html
   My bibliography  Save this article

A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine

Author

Listed:
  • Hosseini, S. Rasoul
  • Ganji, Davoud Domiri

Abstract

In this study, the performance of Invelox Wind Turbine, under the effect of geometric changes in the nozzle-diffuser section, is investigated by Finite Volume Method. To follow a more realistic approach, the wind speed equation is applied to the inlet. The effects of ratio of the length to nozzle cross-sectional area, diffuser length, diffusion angle, various nozzle design standards, also the angle and height of the added flange were described by the pressure and velocity distribution contours. The results showed that when the ratio of the nozzle length to throat diameter rises up to an optimum value, the channel flow rate increases and after that it begins to decrease. Then, the RSM optimization method was employed to optimize the diffuser, and optimal values of diffuser length to throat diameter and diffuser opening angle to nozzle opening angle ratios were obtained. Also, to apply the ideal nozzle the system was geometrically optimized to meet the Invelox system requirements. After that, the power rise due to adding the outlet flange was studied, and an appropriate geometric ratio was achieved. Finally, the system performance, when the turbine was modeled as a uniformly loaded actuator disc was investigated to find the most efficient turbine.

Suggested Citation

  • Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220301894
    DOI: 10.1016/j.energy.2020.117082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allaei, Daryoush & Tarnowski, David & Andreopoulos, Yiannis, 2015. "INVELOX with multiple wind turbine generator systems," Energy, Elsevier, vol. 93(P1), pages 1030-1040.
    2. Grant, Andrew & Johnstone, Cameron & Kelly, Nick, 2008. "Urban wind energy conversion: The potential of ducted turbines," Renewable Energy, Elsevier, vol. 33(6), pages 1157-1163.
    3. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 178-184.
    4. Kardous, M. & Chaker, R. & Aloui, F. & Nasrallah, S. Ben, 2013. "On the dependence of an empty flanged diffuser performance on flange height: Numerical simulations and PIV visualizations," Renewable Energy, Elsevier, vol. 56(C), pages 123-128.
    5. Bukala, Jakub & Damaziak, Krzysztof & Karimi, Hamid Reza & Kroszczynski, Krzysztof & Krzeszowiec, Marcin & Malachowski, Jerzy, 2015. "Modern small wind turbine design solutions comparison in terms of estimated cost to energy output ratio," Renewable Energy, Elsevier, vol. 83(C), pages 1166-1173.
    6. Sotoudeh, Freshteh & Kamali, Reza & Mousavi, Seyed Mahmood, 2019. "Field tests and numerical modeling of INVELOX wind turbine application in low wind speed region," Energy, Elsevier, vol. 181(C), pages 745-759.
    7. Hu, Ssu-Yuan & Cheng, Jung-Ho, 2008. "Innovatory designs for ducted wind turbines," Renewable Energy, Elsevier, vol. 33(7), pages 1491-1498.
    8. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    9. Allaei, Daryoush & Andreopoulos, Yiannis, 2014. "INVELOX: Description of a new concept in wind power and its performance evaluation," Energy, Elsevier, vol. 69(C), pages 336-344.
    10. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    11. Aranake, Aniket C. & Lakshminarayan, Vinod K. & Duraisamy, Karthik, 2015. "Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver," Renewable Energy, Elsevier, vol. 75(C), pages 818-832.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    2. Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).
    3. Ghorani, Mohammad Mahdi & Karimi, Behrooz & Mirghavami, Seyed Mohammad & Saboohi, Zoheir, 2023. "A numerical study on the feasibility of electricity production using an optimized wind delivery system (Invelox) integrated with a Horizontal axis wind turbine (HAWT)," Energy, Elsevier, vol. 268(C).
    4. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    5. Siahpour, Shahin & Khakiani, Fardad N. & Fazlollahi, Vahid & Golozar, Ali & Shirazi, Farzad A., 2021. "Morphing Omni-directional Panel Mechanism: A novel active roof design for improving the performance of the wind delivery system," Energy, Elsevier, vol. 217(C).
    6. Rahmatian, Mohammad Ali & Nazarian Shahrbabaki, Amin & Moeini, Seyed Peyman, 2023. "Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siahpour, Shahin & Khakiani, Fardad N. & Fazlollahi, Vahid & Golozar, Ali & Shirazi, Farzad A., 2021. "Morphing Omni-directional Panel Mechanism: A novel active roof design for improving the performance of the wind delivery system," Energy, Elsevier, vol. 217(C).
    2. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    3. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    4. Ghorani, Mohammad Mahdi & Karimi, Behrooz & Mirghavami, Seyed Mohammad & Saboohi, Zoheir, 2023. "A numerical study on the feasibility of electricity production using an optimized wind delivery system (Invelox) integrated with a Horizontal axis wind turbine (HAWT)," Energy, Elsevier, vol. 268(C).
    5. Nardecchia, Fabio & Groppi, Daniele & Astiaso Garcia, Davide & Bisegna, Fabio & de Santoli, Livio, 2021. "A new concept for a mini ducted wind turbine system," Renewable Energy, Elsevier, vol. 175(C), pages 610-624.
    6. Meratizaman, Mousa & Nateqi, Mojtaba, 2021. "Feasibility study of new generation of wind turbine (INVELOX), is it competitive with the Conventional Horizontal Axis Wind Turbine?," Energy, Elsevier, vol. 217(C).
    7. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    9. Wong, Kok Hoe & Chong, Wen Tong & Sukiman, Nazatul Liana & Poh, Sin Chew & Shiah, Yui-Chuin & Wang, Chin-Tsan, 2017. "Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 904-921.
    10. Sotoudeh, Freshteh & Kamali, Reza & Mousavi, Seyed Mahmood, 2019. "Field tests and numerical modeling of INVELOX wind turbine application in low wind speed region," Energy, Elsevier, vol. 181(C), pages 745-759.
    11. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    12. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    13. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    14. Manganhar, Abdul Latif & Rajpar, Altaf Hussain & Luhur, Muhammad Ramzan & Samo, Saleem Raza & Manganhar, Mehtab, 2019. "Performance analysis of a savonius vertical axis wind turbine integrated with wind accelerating and guiding rotor house," Renewable Energy, Elsevier, vol. 136(C), pages 512-520.
    15. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Heikal, Hasim A. & Abu-Elyazeed, Osayed S.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Maged M.S., 2018. "On the actual power coefficient by theoretical developing of the diffuser flange of wind-lens turbine," Renewable Energy, Elsevier, vol. 125(C), pages 295-305.
    17. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    18. Nikolić, Vlastimir & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko, 2015. "Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance," Energy, Elsevier, vol. 89(C), pages 324-333.
    19. Rahmatian, Mohammad Ali & Nazarian Shahrbabaki, Amin & Moeini, Seyed Peyman, 2023. "Single-objective optimization design of convergent-divergent ducts of ducted wind turbine using RSM and GA, to increase power coefficient of a small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 269(C).
    20. Mauro, S. & Brusca, S. & Lanzafame, R. & Messina, M., 2019. "CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance," Renewable Energy, Elsevier, vol. 141(C), pages 28-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220301894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.