IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v79y2017icp585-599.html
   My bibliography  Save this article

PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges

Author

Listed:
  • Paul, Biddyut
  • Andrews, John

Abstract

A Unitised Regenerative Fuel Cell (URFC) is a single cell that can function both as a fuel cell and electrolyser. URFCs have mass and volume savings compared to conventional hydrogen systems employing a separate electrolyser and fuel cell. Hence they have potential applications in electrical energy storage systems for a wide range of terrestrial and space applications. This paper reviews the current state of art of this promising technology and identifies the main technical challenges to overcome to make the URFC system more technologically and economically viable. The review reveals that the oxygen-side catalyst layer in a URFC is typically more challenging to design and construct, since a bifunctional catalyst layer and gas diffusion layer (GDL) must be made that functions equally well in electrolyser and fuel cell modes. The prime goal in URFC development is to obtain a roundtrip energy efficiency very close that of a system with a separate electrolyser and fuel cell. It is important to develop light weight, long-lived cells resistant to corrosion or other degradation, and retention of structural integrity and strength after repeated cycling and mode switching. There is still a lack of practical designs and operating experience for URFC stacks scaled up to multi-cell stacks with supply power in the kW range. In addition, development of URFC stacks able to deliver hydrogen at elevated pressure up to 20 bar in E-mode is essential. So that hydrogen can be stored directly as compressed gas or in metal hydride cylinder to reduce the cost of external compressor and parasitic power in standalone power supply systems. If these challenges can be overcome, URFC based on proton exchange membrane (PEM) technology has potential for reducing the cost of overall hydrogen fuel cell system and can offer clean, reliable and onsite hydrogen and power generation.

Suggested Citation

  • Paul, Biddyut & Andrews, John, 2017. "PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 585-599.
  • Handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:585-599
    DOI: 10.1016/j.rser.2017.05.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chun, Jeong Hwan & Jo, Dong Hyun & Kim, Sang Gon & Park, Sun Hee & Lee, Chang Hoon & Lee, Eun Sook & Jyoung, Jy-Young & Kim, Sung Hyun, 2013. "Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 58(C), pages 28-33.
    2. Dihrab, Salwan S. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1663-1668, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rocha, A. & Ferreira, R.B. & Falcão, D.S. & Pinto, A.M.F.R., 2023. "Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: Effect of cell design and operating conditions," Renewable Energy, Elsevier, vol. 215(C).
    2. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    3. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    4. Bizon, Nicu, 2018. "Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system," Applied Energy, Elsevier, vol. 229(C), pages 459-473.
    5. Wilberforce, Tabbi & Ijaodola, O. & Ogungbemi, Emmanuel & Khatib, F.N. & Leslie, T. & El-Hassan, Zaki & Thomposon, J. & Olabi, A.G., 2019. "Technical evaluation of proton exchange membrane (PEM) fuel cell performance – A review of the effects of bipolar plates coating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Griese, Martin & Hoffarth, Marc Philippe & Schneider, Jan & Schulte, Thomas, 2019. "Hardware-in-the-Loop simulation of an optimized energy management incorporating an experimental biocatalytic methanation reactor," Energy, Elsevier, vol. 181(C), pages 77-90.
    7. Luta, Doudou N. & Raji, Atanda K., 2019. "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, Elsevier, vol. 166(C), pages 530-540.
    8. Chen, Ke & Chen, Wenshang & Zou, Guofu & Chen, Ben, 2024. "Intelligent optimization: Novel application of PCC, MCDM, and ANN + NSGA-III in integrated optimization of the flow field and porous layer structures for unitized regenerative fuel cell," Applied Energy, Elsevier, vol. 374(C).
    9. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    10. Lu, Xinyu & Du, Banghua & Zhu, Wenchao & Yang, Yang & Xie, Changjun & Tu, Zhengkai & Zhao, Bo & Zhang, Leiqi & Wang, Jianqiang & Yang, Zheng, 2024. "Multi-criteria assessment of an auxiliary energy system for desalination plant based on PEMFC-ORC combined heat and power," Energy, Elsevier, vol. 290(C).
    11. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Han, Gwangwoo & Kwon, YongKeun & Kim, Joong Bae & Lee, Sanghun & Bae, Joongmyeon & Cho, EunAe & Lee, Bong Jae & Cho, Sungbaek & Park, Jinwoo, 2020. "Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell," Applied Energy, Elsevier, vol. 259(C).
    13. Fathabadi, Hassan, 2019. "Combining a proton exchange membrane fuel cell (PEMFC) stack with a Li-ion battery to supply the power needs of a hybrid electric vehicle," Renewable Energy, Elsevier, vol. 130(C), pages 714-724.
    14. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    15. Luque-Centeno, J.M. & Martínez-Huerta, M.V. & Sebastián, D. & Lemes, G. & Pastor, E. & Lázaro, M.J., 2018. "Bifunctional N-doped graphene Ti and Co nanocomposites for the oxygen reduction and evolution reactions," Renewable Energy, Elsevier, vol. 125(C), pages 182-192.
    16. Mendecka, Barbara & Tribioli, Laura & Cozzolino, Raffaello, 2020. "Life Cycle Assessment of a stand-alone solar-based polygeneration power plant for a commercial building in different climate zones," Renewable Energy, Elsevier, vol. 154(C), pages 1132-1143.
    17. Cozzolino, Raffaello & Chiappini, Daniele & Tribioli, Laura, 2021. "Off-grid PV/URFC power plant fueled with biogas from food waste: An energetic and economic analysis," Energy, Elsevier, vol. 219(C).
    18. Banasiak, David & Kienberger, Thomas, 2024. "A comparative analysis of the economic feasibility of reversible hydrogen systems based on time-resolved operation optimisation," Applied Energy, Elsevier, vol. 371(C).
    19. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    20. Bianchi, F.R. & Bosio, B. & Conte, F. & Massucco, S. & Mosaico, G. & Natrella, G. & Saviozzi, M., 2023. "Modelling and optimal management of renewable energy communities using reversible solid oxide cells," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, A. & Ferreira, R.B. & Falcão, D.S. & Pinto, A.M.F.R., 2023. "Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: Effect of cell design and operating conditions," Renewable Energy, Elsevier, vol. 215(C).
    2. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    3. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2016. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 961-977.
    4. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    5. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    6. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Lan, Shunbo & Lin, Rui & Dong, Mengcheng & Lu, Kai & Lou, Mingyu, 2023. "Image recognition of cracks and the effect in the microporous layer of proton exchange membrane fuel cells on performance," Energy, Elsevier, vol. 266(C).
    8. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    9. Bhosale, Amit C. & Ghosh, Prakash C. & Assaud, Loïc, 2020. "Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    11. Zhang, Jingjing & Wang, Biao & Jin, Junhong & Yang, Shenglin & Li, Guang, 2022. "A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Oluwatosin Ijaodola & Emmanuel Ogungbemi & Fawwad Nisar. Khatib & Tabbi Wilberforce & Mohamad Ramadan & Zaki El Hassan & James Thompson & Abdul Ghani Olabi, 2018. "Evaluating the Effect of Metal Bipolar Plate Coating on the Performance of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 11(11), pages 1-28, November.
    13. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Deng, Hao & Wang, Dawei & Xie, Xu & Zhou, Yibo & Yin, Yan & Du, Qing & Jiao, Kui, 2016. "Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization," Renewable Energy, Elsevier, vol. 91(C), pages 166-177.
    15. Wang, Qing-Hui & Yang, Song & Zhou, Wei & Li, Jing-Rong & Xu, Zhi-Jia & Ke, Yu-Zhi & Yu, Wei & Hu, Guang-Hua, 2018. "Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution," Applied Energy, Elsevier, vol. 216(C), pages 243-261.
    16. Yu, Yang & Chen, Sheng & Wu, Yuanhao, 2023. "Predicting gas diffusion layer flow information in proton exchange membrane fuel cells from cross-sectional data using deep learning methods," Energy, Elsevier, vol. 282(C).
    17. Hossein Pourrahmani & Majid Siavashi & Adel Yavarinasab & Mardit Matian & Nazanin Chitgar & Ligang Wang & Jan Van herle, 2022. "A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants," Energies, MDPI, vol. 15(14), pages 1-30, July.
    18. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    19. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    20. dos Santos, Kenia Gabriela & Eckert, Caroline Thaís & De Rossi, Eduardo & Bariccatti, Reinaldo Aparecido & Frigo, Elisandro Pires & Lindino, Cleber Antonio & Alves, Helton José, 2017. "Hydrogen production in the electrolysis of water in Brazil, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 563-571.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:585-599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.