IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics0960148123007619.html
   My bibliography  Save this article

Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: Effect of cell design and operating conditions

Author

Listed:
  • Rocha, A.
  • Ferreira, R.B.
  • Falcão, D.S.
  • Pinto, A.M.F.R.

Abstract

Constant electrode (CE) operation of a unitized regenerative fuel cell (URFC) facilitates the optimization of each electrode. In this work, bipolar plates (BPPs) with different flow fields (FFs) are assessed, and a graphite BPP is compared with a titanium BPP in the cathode. Platinum coated titanium felt and carbon cloth and paper gas diffusion layers (GDLs) are tested in the cathode. The carbon BPP and GDLs operated with higher ohmic resistance than the titanium alternatives. However, the titanium GDL caused flooding in FC mode. Carbon GDLs can be applied in the cathode, where carbon paper operated with higher performance than carbon cloth. Titanium GDL is still required in the anode to resist the corrosive environment. A double-serpentine FF in the cathode and a parallel design in the anode were applied. Optimization of the URFC operating conditions under FC mode provided the best results at 80 °C, 2 barabs, with saturated air and dry hydrogen and stoichiometry ratios of 2 and 8. This resulted in a round-trip efficiency of 56% at 0.1 A cm−2, 48% at 0.3 A cm−2 and 22% at 1 A cm−2. In comparison, 56%, 52% and 37% were obtained with a discrete regenerative fuel cell (DRFC).

Suggested Citation

  • Rocha, A. & Ferreira, R.B. & Falcão, D.S. & Pinto, A.M.F.R., 2023. "Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: Effect of cell design and operating conditions," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123007619
    DOI: 10.1016/j.renene.2023.05.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123007619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dihrab, Salwan S. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1663-1668, August.
    2. Yuan, Xian Ming & Guo, Hang & Liu, Jia Xing & Ye, Fang & Ma, Chong Fang, 2018. "Influence of operation parameters on mode switching from electrolysis cell mode to fuel cell mode in a unitized regenerative fuel cell," Energy, Elsevier, vol. 162(C), pages 1041-1051.
    3. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2016. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 961-977.
    4. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    5. Paul, Biddyut & Andrews, John, 2017. "PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 585-599.
    6. Antonio Sorrentino & Kai Sundmacher & Tanja Vidakovic-Koch, 2020. "Polymer Electrolyte Fuel Cell Degradation Mechanisms and Their Diagnosis by Frequency Response Analysis Methods: A Review," Energies, MDPI, vol. 13(21), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    2. Bhosale, Amit C. & Ghosh, Prakash C. & Assaud, Loïc, 2020. "Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Han, Gwangwoo & Kwon, YongKeun & Kim, Joong Bae & Lee, Sanghun & Bae, Joongmyeon & Cho, EunAe & Lee, Bong Jae & Cho, Sungbaek & Park, Jinwoo, 2020. "Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell," Applied Energy, Elsevier, vol. 259(C).
    4. Luque-Centeno, J.M. & Martínez-Huerta, M.V. & Sebastián, D. & Lemes, G. & Pastor, E. & Lázaro, M.J., 2018. "Bifunctional N-doped graphene Ti and Co nanocomposites for the oxygen reduction and evolution reactions," Renewable Energy, Elsevier, vol. 125(C), pages 182-192.
    5. Wilberforce, Tabbi & Ijaodola, O. & Ogungbemi, Emmanuel & Khatib, F.N. & Leslie, T. & El-Hassan, Zaki & Thomposon, J. & Olabi, A.G., 2019. "Technical evaluation of proton exchange membrane (PEM) fuel cell performance – A review of the effects of bipolar plates coating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2016. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 961-977.
    7. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    8. Yao, Yue & Ma, Yue & Wang, Chenpeng & Ye, Hao & Liu, Yinglong & Liu, Jiawei & Zhao, Xiaobo & Tao, Tao & Yao, Yingbang & Lu, Shengguo & Yang, Huazheng & Liang, Bo, 2022. "A cofuel channel microtubular solid oxide fuel/electrolysis cell," Applied Energy, Elsevier, vol. 327(C).
    9. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    10. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    11. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    12. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    13. Fiammetta Rita Bianchi & Arianna Baldinelli & Linda Barelli & Giovanni Cinti & Emilio Audasso & Barbara Bosio, 2020. "Multiscale Modeling for Reversible Solid Oxide Cell Operation," Energies, MDPI, vol. 13(19), pages 1-16, September.
    14. Oh, Hwanyeong & Lee, Won-Yong & Won, Jinyeon & Kim, Minjin & Choi, Yoon-Young & Han, Soo-Bin, 2020. "Residual-based fault diagnosis for thermal management systems of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 277(C).
    15. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    16. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Obu Samson Showers & Sunetra Chowdhury, 2024. "Enhancing Energy Supply Reliability for University Lecture Halls Using Photovoltaic-Battery Microgrids: A South African Case Study," Energies, MDPI, vol. 17(13), pages 1-26, June.
    18. Saheli Biswas & Shambhu Singh Rathore & Aniruddha Pramod Kulkarni & Sarbjit Giddey & Sankar Bhattacharya, 2021. "A Theoretical Study on Reversible Solid Oxide Cells as Key Enablers of Cyclic Conversion between Electrical Energy and Fuel," Energies, MDPI, vol. 14(15), pages 1-18, July.
    19. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
    20. Xu, Jiang-Hai & Zhang, Ben-Xi & Yan, Han-Zhang & Ding, Quan & Zhu, Kai-Qi & Yang, Yan-Ru & Huang, Tai-Ming & Li, Shi & Wan, Zhong-Min & Wang, Xiao-Dong, 2023. "A comprehensive assessment of the hybrid power generation system of PEMFC and internal combustion engine based on ammonia decomposition," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123007619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.