Multi-criteria assessment of an auxiliary energy system for desalination plant based on PEMFC-ORC combined heat and power
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.130163
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
- Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
- Perna, Alessandra & Minutillo, Mariagiovanna & Jannelli, Elio, 2015. "Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic Rankine cycle for heating and power production," Energy, Elsevier, vol. 88(C), pages 874-884.
- Kwan, T.H. & Shen, Y. & Pei, G., 2021. "Recycling fuel cell waste heat to the thermoelectric cooler for enhanced combined heat, power and water production," Energy, Elsevier, vol. 223(C).
- Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
- Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: Thermodynamic optimization," Energy, Elsevier, vol. 66(C), pages 423-434.
- Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
- Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
- Alijanpour sheshpoli, Mohamad & Mousavi Ajarostaghi, Seyed Soheil & Delavar, Mojtaba Aghajani, 2018. "Waste heat recovery from a 1180 kW proton exchange membrane fuel cell (PEMFC) system by Recuperative organic Rankine cycle (RORC)," Energy, Elsevier, vol. 157(C), pages 353-366.
- Paul, Biddyut & Andrews, John, 2017. "PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 585-599.
- Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
- Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
- Al-Sayyab, Ali Khalid Shaker & Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín, 2023. "Performance evaluation of modified compound organic Rankine-vapour compression cycle with two cooling levels, heating, and power generation," Applied Energy, Elsevier, vol. 334(C).
- Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
- Yamamoto, Hiromi & Fujioka, Hanako & Okano, Kunihiko, 2021. "Cost analysis of stable electric and hydrogen energy supplies derived from 100% variable renewable resources systems," Renewable Energy, Elsevier, vol. 178(C), pages 1165-1173.
- Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Yee Mah, Angel Xin & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Liew, Peng Yen & Muis, Zarina Ab, 2021. "Targeting and scheduling of standalone renewable energy system with liquid organic hydrogen carrier as energy storage," Energy, Elsevier, vol. 218(C).
- Hemmati, Reza & Mehrjerdi, Hasan & Bornapour, Mosayeb, 2020. "Hybrid hydrogen-battery storage to smooth solar energy volatility and energy arbitrage considering uncertain electrical-thermal loads," Renewable Energy, Elsevier, vol. 154(C), pages 1180-1187.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Karthikeyan, B. & Praveen Kumar, G. & Narayanan, Ramadas & R, Saravanan & Coronas, Alberto, 2024. "Thermo-economic optimization of hybrid solar-biomass driven organic rankine cycle integrated heat pump and PEM electrolyser for combined power, heating, and green hydrogen applications," Energy, Elsevier, vol. 299(C).
- Yang, Xiaolin & Kong, Ying & Zhou, Yu & Liu, Dawei & Xia, Jianjun, 2024. "Case study on combined heat and water system for district heating in Beijing through recovery of industrial waste heat in Tangshan," Energy, Elsevier, vol. 300(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Yanju & Li, Dongxu & Ma, Zheshu & Zheng, Meng & Lu, Zhanghao & Song, Hanlin & Guo, Xinjia & Shao, Wei, 2022. "Performance analysis and optimization of a novel vehicular power system based on HT-PEMFC integrated methanol steam reforming and ORC," Energy, Elsevier, vol. 257(C).
- Yong Zuo & Sebastiano Bellani & Michele Ferri & Gabriele Saleh & Dipak V. Shinde & Marilena Isabella Zappia & Rosaria Brescia & Mirko Prato & Luca Trizio & Ivan Infante & Francesco Bonaccorso & Libera, 2023. "High-performance alkaline water electrolyzers based on Ru-perturbed Cu nanoplatelets cathode," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
- Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
- Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
- Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
- Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
- Zheng, Yi & You, Shi & Bindner, Henrik W. & Münster, Marie, 2022. "Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal–electric properties and state-transitional dynamics," Applied Energy, Elsevier, vol. 307(C).
- Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
- Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
- Nyangon, Joseph & Darekar, Ayesha, 2024. "Advancements in hydrogen energy systems: A review of levelized costs, financial incentives and technological innovations," Innovation and Green Development, Elsevier, vol. 3(3).
- Carlson, Ewa Lazarczyk & Pickford, Kit & Nyga-Łukaszewska, Honorata, 2023. "Green hydrogen and an evolving concept of energy security: Challenges and comparisons," Renewable Energy, Elsevier, vol. 219(P1).
- George, Jan Frederick & Müller, Viktor Paul & Winkler, Jenny & Ragwitz, Mario, 2022. "Is blue hydrogen a bridging technology? - The limits of a CO2 price and the role of state-induced price components for green hydrogen production in Germany," Energy Policy, Elsevier, vol. 167(C).
- Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Lux, Benjamin & Pfluger, Benjamin, 2020. "A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050," Applied Energy, Elsevier, vol. 269(C).
- Huang, Danji & Xiong, Binyu & Fang, Jiakun & Hu, Kewei & Zhong, Zhiyao & Ying, Yuheng & Ai, Xiaomeng & Chen, Zhe, 2022. "A multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell," Applied Energy, Elsevier, vol. 314(C).
- Yassuda Yamashita, Daniela & Vechiu, Ionel & Gaubert, Jean-Paul, 2021. "Two-level hierarchical model predictive control with an optimised cost function for energy management in building microgrids," Applied Energy, Elsevier, vol. 285(C).
More about this item
Keywords
Proton exchange membrane fuel cell; Organic Rankine cycle; Waste heat recovery; Thermodynamic modeling; Net present value; NSGA-III;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035570. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.