IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp363-385.html
   My bibliography  Save this article

Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era

Author

Listed:
  • Jain, Sanjay
  • Kalambe, Shilpa
  • Agnihotri, Ganga
  • Mishra, Anuprita

Abstract

One of the major consequences of evolutionary growth of industrial era is the continuously growing rate of energy consumption across the world. In the industrialized countries, the concern about economies accompanied by the environmental perspective is a significant driver for inventions of efficient and cost effective modular energy delivering structures. DGs with their heterogeneous forms are likely to be increased in utilization as an outstanding alternative solution to the prevailing energy crises. The advent of DG penetration is leading to fundamental changes in distribution network exploitation and exploration. Nonetheless the DG installation and exploitation has been debated in distribution networks, the fact is that, practically the Distribution Network Operators (DNOs) has limited control or influence over DG allocation and design. Their owners and investors depending on site and fuel availability finalize DG placement. The prime objective to achieve the most from DG installation, owes special attention of DNOs towards DG placement and sizing. This objective encompasses two major sub problems: which may be the optimal location for DG installation and with which capacity? Enormous quality literature is available enlightening this area. This paper presents a state of art of DG deployment techniques and their influence on the ongoing research efforts in this field. To relieve the imminent researchers from the difficulties of availing appropriate guidance, an elfin attempt has put forward through this paper by presenting significant information of research work done in this field.

Suggested Citation

  • Jain, Sanjay & Kalambe, Shilpa & Agnihotri, Ganga & Mishra, Anuprita, 2017. "Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 363-385.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:363-385
    DOI: 10.1016/j.rser.2017.04.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117305245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viral, Rajkumar & Khatod, D.K., 2012. "Optimal planning of distributed generation systems in distribution system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5146-5165.
    2. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    3. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    4. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    5. Kalambe, Shilpa & Agnihotri, Ganga, 2014. "Loss minimization techniques used in distribution network: bibliographical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 184-200.
    6. Hernandez, J.A. & Velasco, D. & Trujillo, C.L., 2011. "Analysis of the effect of the implementation of photovoltaic systems like option of distributed generation in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2290-2298, June.
    7. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando Yanine & Antonio Sánchez-Squella & Aldo Barrueto & Antonio Parejo & Felisa Cordova & Hans Rother, 2020. "Grid-Tied Distributed Generation Systems to Sustain the Smart Grid Transformation: Tariff Analysis and Generation Sharing," Energies, MDPI, vol. 13(5), pages 1-19, March.
    2. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Chu Donatus Iweh & Samuel Gyamfi & Emmanuel Tanyi & Eric Effah-Donyina, 2021. "Distributed Generation and Renewable Energy Integration into the Grid: Prerequisites, Push Factors, Practical Options, Issues and Merits," Energies, MDPI, vol. 14(17), pages 1-34, August.
    4. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    5. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    6. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    7. Mario Llamas-Rivas & Alejandro Pizano-Martínez & Claudio R. Fuerte-Esquivel & Luis R. Merchan-Villalba & José M. Lozano-García & Enrique A. Zamora-Cárdenas & Víctor J. Gutiérrez-Martínez, 2021. "Pressure Retarded Osmosis Power Units Modelling for Power Flow Analysis of Electric Distribution Networks," Energies, MDPI, vol. 14(20), pages 1-30, October.
    8. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Lifetime, cost and fuel efficiency in diesel projects for rural electrification in Venezuela," Energy Policy, Elsevier, vol. 121(C), pages 152-161.
    9. Stefano Moroni & Valentina Antoniucci & Adriano Bisello, 2019. "Local Energy Communities and Distributed Generation: Contrasting Perspectives, and Inevitable Policy Trade-Offs, beyond the Apparent Global Consensus," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    10. German Osma-Pinto & María García-Rodríguez & Jeisson Moreno-Vargas & Cesar Duarte-Gualdrón, 2020. "Impact Evaluation of Grid-Connected PV Systems on PQ Parameters by Comparative Analysis based on Inferential Statistics," Energies, MDPI, vol. 13(7), pages 1-19, April.
    11. Alejandro López-González & Bruno Domenech & Laia Ferrer-Martí, 2021. "Sustainability Evaluation of Rural Electrification in Cuba: From Fossil Fuels to Modular Photovoltaic Systems: Case Studies from Sancti Spiritus Province," Energies, MDPI, vol. 14(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    2. Syed Ali Abbas Kazmi & Abdul Kashif Janjua & Dong Ryeol Shin, 2018. "Enhanced Voltage Stability Assessment Index Based Planning Approach for Mesh Distribution Systems," Energies, MDPI, vol. 11(5), pages 1-36, May.
    3. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    4. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    5. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    6. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    7. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    8. Kadir Doğanşahin & Bedri Kekezoğlu & Recep Yumurtacı & Ozan Erdinç & João P. S. Catalão, 2018. "Maximum Permissible Integration Capacity of Renewable DG Units Based on System Loads," Energies, MDPI, vol. 11(1), pages 1-16, January.
    9. Syed Ali Abbas Kazmi & Dong Ryeol Shin, 2017. "DG Placement in Loop Distribution Network with New Voltage Stability Index and Loss Minimization Condition Based Planning Approach under Load Growth," Energies, MDPI, vol. 10(8), pages 1-28, August.
    10. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    11. Tan, Wen-Shan & Hassan, Mohammad Yusri & Majid, Md Shah & Abdul Rahman, Hasimah, 2013. "Optimal distributed renewable generation planning: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 626-645.
    12. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    13. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    14. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    15. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    16. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    17. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
    18. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.
    19. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    20. Singh, Bindeshwar & Sharma, Janmejay, 2017. "A review on distributed generation planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 529-544.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:363-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.