IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1187-d328664.html
   My bibliography  Save this article

Grid-Tied Distributed Generation Systems to Sustain the Smart Grid Transformation: Tariff Analysis and Generation Sharing

Author

Listed:
  • Fernando Yanine

    (College of Engineering, Universidad Finis Terrae, Santiago 7500000, Chile)

  • Antonio Sánchez-Squella

    (Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago 8940000, Chile)

  • Aldo Barrueto

    (Department of Electrical Engineering, Universidad Técnica Federico Santa María, Santiago 8940000, Chile)

  • Antonio Parejo

    (Department of Electronic Technology, Escuela Politécnica Superior, University of Seville, 41011 Seville, Spain)

  • Felisa Cordova

    (College of Engineering, Universidad Finis Terrae, Santiago 7500000, Chile)

  • Hans Rother

    (Chief Unit of Measurement and Telemetry, ENEL Distribucion Smart Metering and Telecommunications, Mac Iver No 468, Santiago Centro, Santiago 7500000, Chile)

Abstract

In this paper a novel model is being proposed and considered by ENEL—the largest electric utility in Chile—and analyzed thoroughly, whereby electric power control and energy management for a 60-apartments’ residential building is presented as an example of the utility’s green energy program, part of its Smart Grid Transformation plan to install grid-tied distributed generation (DG) systems, namely microgrids, with solar generation and energy storage in Santiago, Chile. The particular tariffs scheme analysis shown is part of the overall projected tentative benefits of adopting the new scheme, which will require the utility’s customers to adapt their consumption behavior to the limited supply of renewable energy by changing energy consumption habits and schedules in a way that maximizes the capacity and efficiency of the grid-tied microgrid with energy storage. The change in behavior entails rescheduling power consumption to hours where the energy supply capacity in the DG system is higher and price is lower as well as curtailing their power needs in certain hourly blocks so as to maximize DG system’s efficiency and supply capacity. Nevertheless, the latter presents a problem under the perspective of ENEL’s renewable energy sources (RES) integration plan with the electric utility’s grid supply, which, up until now and due to current electric tariffs law, has not had a clear solution. Under said scenario, a set of strategies based on energy homeostasis principles for the coordination and control of the electricity supply versus customers’ demand has been devised and tested. These strategies which consider various scenarios to conform to grid flexibility requirements by ENEL, have been adapted for the specific needs of these types of customers while considering the particular infrastructure of the network. Thus, the microgrid adjusts itself to the grid in order to complement the grid supply while seeking to maximize green supply capacity and operational efficiency, wherein the different energy users and their energy consumption profiles play a crucial role as “active loads”, being able to respond and adapt to the needs of the grid-connected microgrid while enjoying economic benefits. Simulation results are presented under different tariff options, system’s capacity and energy storage alternatives, in order to compare the proposed strategies with the actual case of traditional grid’s electricity distribution service, where no green energy is present. The results show the advantage of the proposed tariffs scheme, along with power control and energy management strategies for the integration of distributed power generation within ENEL’s Smart Grid Transformation in Chile.

Suggested Citation

  • Fernando Yanine & Antonio Sánchez-Squella & Aldo Barrueto & Antonio Parejo & Felisa Cordova & Hans Rother, 2020. "Grid-Tied Distributed Generation Systems to Sustain the Smart Grid Transformation: Tariff Analysis and Generation Sharing," Energies, MDPI, vol. 13(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1187-:d:328664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Bindeshwar & Sharma, Janmejay, 2017. "A review on distributed generation planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 529-544.
    2. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    3. Basak, Prasenjit & Chowdhury, S. & Halder nee Dey, S. & Chowdhury, S.P., 2012. "A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5545-5556.
    4. Hanna, Ryan & Ghonima, Mohamed & Kleissl, Jan & Tynan, George & Victor, David G., 2017. "Evaluating business models for microgrids: Interactions of technology and policy," Energy Policy, Elsevier, vol. 103(C), pages 47-61.
    5. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
    6. Yanine, Franco Fernando & Caballero, Federico I. & Sauma, Enzo E. & Córdova, Felisa M., 2014. "Building sustainable energy systems: Homeostatic control of grid-connected microgrids, as a means to reconcile power supply and energy demand response management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1168-1191.
    7. Antonio Parejo & Antonio Sanchez-Squella & Rodrigo Barraza & Fernando Yanine & Aldo Barrueto-Guzman & Carlos Leon, 2019. "Design and Simulation of an Energy Homeostaticity System for Electric and Thermal Power Management in a Building with Smart Microgrid," Energies, MDPI, vol. 12(9), pages 1-19, May.
    8. Minnaar, U.J., 2016. "Regulatory practices and Distribution System Cost impact studies for distributed generation: Considerations for South African distribution utilities and regulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1139-1149.
    9. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    10. Jain, Sanjay & Kalambe, Shilpa & Agnihotri, Ganga & Mishra, Anuprita, 2017. "Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 363-385.
    11. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    12. de Faria, Haroldo & Trigoso, Federico B.M. & Cavalcanti, João A.M., 2017. "Review of distributed generation with photovoltaic grid connected systems in Brazil: Challenges and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 469-475.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "Incorporation of Microgrid Technology Solutions to Reduce Power Loss in a Distribution Network with Elimination of Inefficient Power Conversion Strategies," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    2. Leonardo Chabla-Auqui & Danny Ochoa-Correa & Edisson Villa-Ávila & Patricio Astudillo-Salinas, 2023. "Distributed Generation Applied to Residential Self-Supply in South America in the Decade 2013–2023: A Literature Review," Energies, MDPI, vol. 16(17), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    2. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    3. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    4. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Alejandro López-González & Bruno Domenech & Laia Ferrer-Martí, 2021. "Sustainability Evaluation of Rural Electrification in Cuba: From Fossil Fuels to Modular Photovoltaic Systems: Case Studies from Sancti Spiritus Province," Energies, MDPI, vol. 14(9), pages 1-17, April.
    7. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    8. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    9. Ibrahim Abada, Andreas Ehrenmann, and Xavier Lambin, 2020. "On the Viability of Energy Communities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Lifetime, cost and fuel efficiency in diesel projects for rural electrification in Venezuela," Energy Policy, Elsevier, vol. 121(C), pages 152-161.
    11. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    12. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    13. Burmester, Daniel & Rayudu, Ramesh & Seah, Winston & Akinyele, Daniel, 2017. "A review of nanogrid topologies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 760-775.
    14. German Osma-Pinto & María García-Rodríguez & Jeisson Moreno-Vargas & Cesar Duarte-Gualdrón, 2020. "Impact Evaluation of Grid-Connected PV Systems on PQ Parameters by Comparative Analysis based on Inferential Statistics," Energies, MDPI, vol. 13(7), pages 1-19, April.
    15. Holjevac, Ninoslav & Capuder, Tomislav & Zhang, Ning & Kuzle, Igor & Kang, Chongqing, 2017. "Corrective receding horizon scheduling of flexible distributed multi-energy microgrids," Applied Energy, Elsevier, vol. 207(C), pages 176-194.
    16. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    17. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    18. Rani, Preeti & Parkash, Ved & Sharma, Naveen Kumar, 2024. "Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    20. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part II: Review and classification of control strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1123-1134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1187-:d:328664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.