IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6649-d656164.html
   My bibliography  Save this article

Pressure Retarded Osmosis Power Units Modelling for Power Flow Analysis of Electric Distribution Networks

Author

Listed:
  • Mario Llamas-Rivas

    (Faculty of Electrical Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico)

  • Alejandro Pizano-Martínez

    (Department of Electrical Engineering, Universidad de Guanajuato, Guanajuato 36885, Mexico)

  • Claudio R. Fuerte-Esquivel

    (Faculty of Electrical Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico)

  • Luis R. Merchan-Villalba

    (Department of Electrical Engineering, Universidad de Guanajuato, Guanajuato 36885, Mexico)

  • José M. Lozano-García

    (Department of Electrical Engineering, Universidad de Guanajuato, Guanajuato 36885, Mexico)

  • Enrique A. Zamora-Cárdenas

    (Department of Electrical Engineering, Universidad de Guanajuato, Guanajuato 36885, Mexico)

  • Víctor J. Gutiérrez-Martínez

    (Department of Electrical Engineering, Universidad de Guanajuato, Guanajuato 36885, Mexico)

Abstract

Pressure retarded osmosis (PRO) power units, which produce electrical energy from salinity gradient sources located at coastlines, are a technology still in the process of maturation; however, there is an expectation that this technology will need to be integrated into electrical distribution networks. Such integration will drive changes in the electric response of the distribution systems which may lead to harmful operating conditions. Power flow analysis is a tool used to reveal the steady-state operating condition of distribution systems and which could be extended to study and address the integration of PRO power units. To the best of the authors’ knowledge, such extension of power flow analysis has not yet been addressed in the literature. Accordingly, this paper comprehensively provides a model to evaluate the electric current and complex power produced by PRO power units. This model is directly embedded in the forward-backward sweep (FBS) method, extending the power flow analysis of electric distribution systems in this way so as to consider the integration of PRO power units. The resulting approach permits revealing of the steady-state operating response of distribution systems and the effects that may be driven by the integration of PRO power units, as corroborated through numerical results on a 14-node test distribution system.

Suggested Citation

  • Mario Llamas-Rivas & Alejandro Pizano-Martínez & Claudio R. Fuerte-Esquivel & Luis R. Merchan-Villalba & José M. Lozano-García & Enrique A. Zamora-Cárdenas & Víctor J. Gutiérrez-Martínez, 2021. "Pressure Retarded Osmosis Power Units Modelling for Power Flow Analysis of Electric Distribution Networks," Energies, MDPI, vol. 14(20), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6649-:d:656164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Pressure-retarded osmotic power system model considering non-ideal effects," Renewable Energy, Elsevier, vol. 75(C), pages 416-424.
    2. Naguib, Maged Fouad & Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2015. "Modeling pressure-retarded osmotic power in commercial length membranes," Renewable Energy, Elsevier, vol. 76(C), pages 619-627.
    3. Jain, Sanjay & Kalambe, Shilpa & Agnihotri, Ganga & Mishra, Anuprita, 2017. "Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 363-385.
    4. Qais Alsafasfeh & Omar A. Saraereh & Imran Khan & Sunghwan Kim, 2019. "Solar PV Grid Power Flow Analysis," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manzoor, Husnain & Selam, Muaz A. & Abdur Rahman, Fahim Bin & Adham, Samer & Castier, Marcelo & Abdel-Wahab, Ahmed, 2020. "A tool for assessing the scalability of pressure-retarded osmosis (PRO) membranes," Renewable Energy, Elsevier, vol. 149(C), pages 987-999.
    2. He, Wei & Wang, Yang & Elyasigomari, Vahid & Shaheed, Mohammad Hasan, 2016. "Evaluation of the detrimental effects in osmotic power assisted reverse osmosis (RO) desalination," Renewable Energy, Elsevier, vol. 93(C), pages 608-619.
    3. Bargiacchi, Eleonora & Orciuolo, Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2020. "Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows," Energy, Elsevier, vol. 211(C).
    4. Maisonneuve, Jonathan & Laflamme, Claude B. & Pillay, Pragasen, 2016. "Experimental investigation of pressure retarded osmosis for renewable energy conversion: Towards increased net power," Applied Energy, Elsevier, vol. 164(C), pages 425-435.
    5. Touati, Khaled & Salamanca, Jacobo & Tadeo, Fernando & Elfil, Hamza, 2017. "Energy recovery from two-stage SWRO plant using PRO without external freshwater feed stream: Theoretical analysis," Renewable Energy, Elsevier, vol. 105(C), pages 84-95.
    6. Bassel A. Abdelkader & Mostafa H. Sharqawy, 2022. "Challenges Facing Pressure Retarded Osmosis Commercialization: A Short Review," Energies, MDPI, vol. 15(19), pages 1-24, October.
    7. Abdelkader, Bassel A. & Navas, Daniel Ruiz & Sharqawy, Mostafa H., 2023. "A novel spiral wound module design for harvesting salinity gradient energy using pressure retarded osmosis," Renewable Energy, Elsevier, vol. 203(C), pages 542-553.
    8. Maisonneuve, Jonathan & Chintalacheruvu, Sanjana, 2019. "Increasing osmotic power and energy with maximum power point tracking," Applied Energy, Elsevier, vol. 238(C), pages 683-695.
    9. Alejandro López-González & Bruno Domenech & Laia Ferrer-Martí, 2021. "Sustainability Evaluation of Rural Electrification in Cuba: From Fossil Fuels to Modular Photovoltaic Systems: Case Studies from Sancti Spiritus Province," Energies, MDPI, vol. 14(9), pages 1-17, April.
    10. Issah Babatunde Majeed & Nnamdi I. Nwulu, 2022. "Impact of Reverse Power Flow on Distributed Transformers in a Solar-Photovoltaic-Integrated Low-Voltage Network," Energies, MDPI, vol. 15(23), pages 1-19, December.
    11. Zohreh Jalili & Jon G. Pharoah & Odne Stokke Burheim & Kristian Etienne Einarsrud, 2018. "Temperature and Velocity Effects on Mass and Momentum Transport in Spacer-Filled Channels for Reverse Electrodialysis: A Numerical Study," Energies, MDPI, vol. 11(8), pages 1-24, August.
    12. Brandon Cortés-Caicedo & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Miguel Angel Rodriguez-Cabal & Javier Alveiro Rosero, 2022. "Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study," Sustainability, MDPI, vol. 14(23), pages 1-35, December.
    13. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    14. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Lifetime, cost and fuel efficiency in diesel projects for rural electrification in Venezuela," Energy Policy, Elsevier, vol. 121(C), pages 152-161.
    15. Di Michele, F. & Felaco, E. & Gasser, I. & Serbinovskiy, A. & Struchtrup, H., 2019. "Modeling, simulation and optimization of a pressure retarded osmosis power station," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 189-207.
    16. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    17. Wen Yi Chia & Kuan Shiong Khoo & Shir Reen Chia & Kit Wayne Chew & Guo Yong Yew & Yeek-Chia Ho & Pau Loke Show & Wei-Hsin Chen, 2020. "Factors Affecting the Performance of Membrane Osmotic Processes for Bioenergy Development," Energies, MDPI, vol. 13(2), pages 1-22, January.
    18. Nagy, Endre & Dudás, József & Hegedüs, Imre, 2016. "Improvement of the energy generation by pressure retarded osmosis," Energy, Elsevier, vol. 116(P2), pages 1323-1333.
    19. Ruan, Tianqi & Wang, Fuxing & Topel, Monika & Laumert, Björn & Wang, Wujun, 2024. "A new optimal PV installation angle model in high-latitude cold regions based on historical weather big data," Applied Energy, Elsevier, vol. 359(C).
    20. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6649-:d:656164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.