IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp266-280.html
   My bibliography  Save this article

Review of optimization techniques applied for the integration of distributed generation from renewable energy sources

Author

Listed:
  • Abdmouleh, Zeineb
  • Gastli, Adel
  • Ben-Brahim, Lazhar
  • Haouari, Mohamed
  • Al-Emadi, Nasser Ahmed

Abstract

Several potential benefits to the quality and reliability of delivered power can be attained with the installation of distributed generation units. To take full advantage of these benefits, it is essential to place optimally sized distributed generation units at appropriate locations. Otherwise, their installation could provoke negative effects to power quality and system operation. Over the years, various powerful optimization tools were developed for optimal integration of distributed generation. Therefore, optimization techniques are continuously evolving and have been recently the focus of many new studies. This paper reviews recent optimization methods applied to solve the problem of placement and sizing of distributed generation units from renewable energy sources based on a classification of the most recent and highly cited papers. In addition, this paper analyses the environmental, economic, technological, technical, and regulatory drivers that have led to the growing interest on distributed generation integration in combination with an overview about the challenges to overcome. Finally, it examines all significant methods applying optimization techniques of the integration of distributed generation from renewable energy sources. A summary of common heuristic optimization algorithms with Pro-Con lists are discussed in order to raise new potential tracks of hybrid methods that haven't been explored yet.

Suggested Citation

  • Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:266-280
    DOI: 10.1016/j.renene.2017.05.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pannell, David J., 1997. "Sensitivity analysis of normative economic models: theoretical framework and practical strategies," Agricultural Economics, Blackwell, vol. 16(2), pages 139-152, May.
    2. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    3. Anaya, Karim L. & Pollitt, Michael G., 2015. "Integrating distributed generation: Regulation and trends in three leading countries," Energy Policy, Elsevier, vol. 85(C), pages 475-486.
    4. Cossent, Rafael & Gómez, Tomás & Frías, Pablo, 2009. "Towards a future with large penetration of distributed generation: Is the current regulation of electricity distribution ready? Regulatory recommendations under a European perspective," Energy Policy, Elsevier, vol. 37(3), pages 1145-1155, March.
    5. Zangeneh, Ali & Jadid, Shahram & Rahimi-Kian, Ashkan, 2009. "Promotion strategy of clean technologies in distributed generation expansion planning," Renewable Energy, Elsevier, vol. 34(12), pages 2765-2773.
    6. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3480-3500.
    7. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    8. Devadas, V., 2001. "Planning for rural energy system: part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(3), pages 203-226, September.
    9. Devadas, V., 2001. "Planning for rural energy system: part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(3), pages 227-270, September.
    10. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    11. Dicorato, M. & Forte, G. & Trovato, M., 2008. "Environmental-constrained energy planning using energy-efficiency and distributed-generation facilities," Renewable Energy, Elsevier, vol. 33(6), pages 1297-1313.
    12. Soroudi, Alireza & Ehsan, Mehdi & Zareipour, Hamidreza, 2011. "A practical eco-environmental distribution network planning model including fuel cells and non-renewable distributed energy resources," Renewable Energy, Elsevier, vol. 36(1), pages 179-188.
    13. Fred Glover, 1990. "Tabu Search—Part II," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 4-32, February.
    14. Devadas, V., 2001. "Planning for rural energy system: part III," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(3), pages 271-297, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    2. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    3. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    4. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    5. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    6. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    7. Chris S. K. Leung & Henry Y. K. Lau, 2018. "Multiobjective Simulation-Based Optimization Based on Artificial Immune Systems for a Distribution Center," Journal of Optimization, Hindawi, vol. 2018, pages 1-15, May.
    8. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    9. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    10. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    11. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    12. Daniel O’Malley & Velimir V Vesselinov & Boian S Alexandrov & Ludmil B Alexandrov, 2018. "Nonnegative/Binary matrix factorization with a D-Wave quantum annealer," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.
    13. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    14. C-H Lan & C-C Chen, 2007. "Optimal purchase of two-itemized drugs for a disease," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 309-316, March.
    15. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    16. Sadan Kulturel-Konak & Bryan A. Norman & David W. Coit & Alice E. Smith, 2004. "Exploiting Tabu Search Memory in Constrained Problems," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 241-254, August.
    17. Ouzineb, Mohamed & Nourelfath, Mustapha & Gendreau, Michel, 2008. "Tabu search for the redundancy allocation problem of homogenous series–parallel multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1257-1272.
    18. İlker Küçükoğlu & Nursel Öztürk, 2019. "A hybrid meta-heuristic algorithm for vehicle routing and packing problem with cross-docking," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2927-2943, December.
    19. J Brimberg & P Hansen & G Laporte & N Mladenović & D Urošević, 2008. "The maximum return-on-investment plant location problem with market share," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 399-406, March.
    20. J Crispim & J Brandão, 2005. "Metaheuristics applied to mixed and simultaneous extensions of vehicle routing problems with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1296-1302, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:266-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.