IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v75y2017icp592-600.html
   My bibliography  Save this article

Pyrolysis gases burners: Sustainability for integrated production of charcoal, heat and electricity

Author

Listed:
  • Pereira, Emanuele Graciosa
  • Martins, Márcio Arêdes
  • Pecenka, Ralf
  • Carneiro, Angélica de Cássia O.

Abstract

Brazil is the largest producer of charcoal, specifically for obtaining pig iron, basic raw material for the production of steel. Charcoal production is an economically important activity for Brazil, but there are challenges that impede its sustainable production throughout the length of the production chain. A major bottleneck in the charcoal chain is relative to higher emissions of pollutants and gases causing the greenhouse effect. These emissions can, moreover, be mitigated by incineration of the gases, thus reducing emissions into carbon dioxide and water. Incineration of gases opens new business opportunities, because the energy generated during the incineration process can be transformed into electricity, generating more revenue for producers, and can also be used in the drying of the wood to be carbonized, reducing the production cycle time, increasing production capacity and hence producers’ income. However, to date, these technologies failed to achieve the entire production chain, consistently and comprehensively, mainly due to technical barriers to be overcome, requiring researches that validate and improve these systems. Therefore, the general goal was to identify the key critical factors in the Brazilian production chain of charcoal and to investigate major issues related to the combustion of the gases generated during the carbonization process. The charcoal chain study was performed by SWOT analysis and the comprehensive literature review allowed addressing the challenges of burning the emission from charcoal kilns and the status of gas burner technologies. Policies are required to motivate the use of technologies for reducing the emission from charcoal production. Investment in research in partnership to the charcoal companies will ensure the improvement of the gas burning technologies. Also, credit lines to farmers would encourage the implementation of these technologies.

Suggested Citation

  • Pereira, Emanuele Graciosa & Martins, Márcio Arêdes & Pecenka, Ralf & Carneiro, Angélica de Cássia O., 2017. "Pyrolysis gases burners: Sustainability for integrated production of charcoal, heat and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 592-600.
  • Handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:592-600
    DOI: 10.1016/j.rser.2016.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116307699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sophia Baumert, 2016. "Charcoal Supply Chains from Mabalane to Maputo: Who Benefits?," Working Papers id:10807, eSocialSciences.
    2. D'Agostino, Anthony L. & Urpelainen, Johannes & Xu, Alice, 2015. "Socio-economic determinants of charcoal expenditures in Tanzania: Evidence from panel data," Energy Economics, Elsevier, vol. 49(C), pages 472-481.
    3. Adam, J.C., 2009. "Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal)," Renewable Energy, Elsevier, vol. 34(8), pages 1923-1925.
    4. Pizzuti, L. & Martins, C.A. & Lacava, P.T., 2016. "Laminar burning velocity and flammability limits in biogas: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 856-865.
    5. Halouani, Kamel & Farhat, Habib, 2003. "Depollution of atmospheric emissions of wood pyrolysis furnaces," Renewable Energy, Elsevier, vol. 28(1), pages 129-138.
    6. Cheng, Zhilong & Yang, Jian & Zhou, Lang & Liu, Yan & Wang, Qiuwang, 2016. "Characteristics of charcoal combustion and its effects on iron-ore sintering performance," Applied Energy, Elsevier, vol. 161(C), pages 364-374.
    7. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    8. Peláez-Samaniego, M.R. & Garcia-Perez, M. & Cortez, L.B. & Rosillo-Calle, F. & Mesa, J., 2008. "Improvements of Brazilian carbonization industry as part of the creation of a global biomass economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1063-1086, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Paula Protásio, Thiago & Roque Lima, Michael Douglas & Scatolino, Mário Vanoli & Silva, Alanna Barishinikov & Rodrigues de Figueiredo, Izabel Cristina & Gherardi Hein, Paulo Ricardo & Trugilho, Pau, 2021. "Charcoal productivity and quality parameters for reliable classification of Eucalyptus clones from Brazilian energy forests," Renewable Energy, Elsevier, vol. 164(C), pages 34-45.
    2. Carvalho, Ricardo L. & Lindgren, Robert & García-López, Natxo & Nyambane, Anne & Nyberg, Gert & Diaz-Chavez, Rocio & Boman, Christoffer, 2019. "Household air pollution mitigation with integrated biomass/cookstove strategies in Western Kenya," Energy Policy, Elsevier, vol. 131(C), pages 168-186.
    3. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    4. Vicente Leme, Marcio Montagnana & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & de Almeida, Wellington & Rocha, Mateus Henrique & Andrade da Cunha Dias, Tomás & del Olmo, Oscar Almazán, 2021. "Life cycle assessment of charcoal production and electricity generation from eucalyptus in an industrial batch kiln," Renewable Energy, Elsevier, vol. 180(C), pages 232-244.
    5. Coelho, Suani Teixeira & Sanches-Pereira, Alessandro & Tudeschini, Luís Gustavo & Goldemberg, José, 2018. "The energy transition history of fuelwood replacement for liquefied petroleum gas in Brazilian households from 1920 to 2016," Energy Policy, Elsevier, vol. 123(C), pages 41-52.
    6. Carvalho, Pollyana R. & Medeiros, Samuel L.S. & Paixão, Raul L. & Figueredo, Igor M. & Mattos, Adriano L.A. & Rios, M. Alexsandra S., 2023. "Thermogravimetric pyrolysis of residual biomasses obtained post-extraction of carnauba wax: Determination of kinetic parameters using Friedman's isoconversional method," Renewable Energy, Elsevier, vol. 207(C), pages 703-713.
    7. Lima, Michael Douglas Roque & Bufalino, Lina & Scatolino, Mário Vanoli & Hein, Paulo Ricardo Gherardi & Carneiro, Angélica de Cássia Oliveira & Trugilho, Paulo Fernando & Protásio, Thiago de Paula, 2023. "Segregating Amazonia logging wastes from sustainable forest management improves carbonization in brick kilns," Renewable Energy, Elsevier, vol. 211(C), pages 772-788.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    2. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    3. Okello, Collins & Pindozzi, Stefania & Faugno, Salvatore & Boccia, Lorenzo, 2013. "Development of bioenergy technologies in Uganda: A review of progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 55-63.
    4. Rodrigues, Thaisa & Braghini Junior, Aldo, 2019. "Technological prospecting in the production of charcoal: A patent study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 170-183.
    5. Antão Rodrigo Valentim & Jhon Ramírez Behainne & Aldo Braghini Junior, 2022. "Thermal Performance Analysis of Materials and Configurations for Cylindrical Sidewalls of Charcoal Kilns," Energies, MDPI, vol. 15(16), pages 1-21, August.
    6. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    7. Maes, Wouter H. & Verbist, Bruno, 2012. "Increasing the sustainability of household cooking in developing countries: Policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4204-4221.
    8. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2019. "Energy demand substitution from biomass to imported kerosene: Evidence from Tanzania," Energy Policy, Elsevier, vol. 130(C), pages 243-252.
    10. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    11. Saidur, R. & Hossain, M.S. & Islam, M.R. & Fayaz, H. & Mohammed, H.A., 2011. "A review on kiln system modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2487-2500, June.
    12. Hu, Wanhe & Feng, Zixing & Yang, Jianfei & Gao, Qi & Ni, Liangmeng & Hou, Yanmei & He, Yuyu & Liu, Zhijia, 2021. "Combustion behaviors of molded bamboo charcoal: Influence of pyrolysis temperatures," Energy, Elsevier, vol. 226(C).
    13. Velazquez Abad, Anthony & Cherrett, Tom & Holdsworth, Peter, 2015. "Waste-to-fuel opportunities for British quick service restaurants: A case study," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 239-253.
    14. Choumert-Nkolo, Johanna & Combes Motel, Pascale & Le Roux, Leonard, 2019. "Stacking up the ladder: A panel data analysis of Tanzanian household energy choices," World Development, Elsevier, vol. 115(C), pages 222-235.
    15. Kasmuri, N.H. & Kamarudin, S.K. & Abdullah, S.R.S. & Hasan, H.A. & Som, A.Md., 2017. "Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 914-923.
    16. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    17. Chenjia Zhang & Yiping Fang & Xiujuan Chen & Tian Congshan, 2019. "Bibliometric Analysis of Trends in Global Sustainable Livelihood Research," Sustainability, MDPI, vol. 11(4), pages 1-28, February.
    18. Vollmer, Frank & Zorrilla-Miras, Pedro & Baumert, Sophia & Luz, Ana Catarina & Woollen, Emily & Grundy, Isla & Artur, Luis & Ribeiro, Natasha & Mahamane, Mansour & Patenaude, Genevieve, 2017. "Charcoal income as a means to a valuable end: Scope and limitations of income from rural charcoal production to alleviate acute multidimensional poverty in Mabalane district, southern Mozambique," World Development Perspectives, Elsevier, vol. 7, pages 43-60.
    19. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    20. Abdallah, Muhammed S. & Mansour, Mohy S. & Allam, Nageh K., 2021. "Mapping the stability of free-jet biogas flames under partially premixed combustion," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:75:y:2017:i:c:p:592-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.