IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v70y2017icp519-528.html
   My bibliography  Save this article

Energy and quality aspects for fixed deep bed drying of paddy

Author

Listed:
  • Tohidi, Mojtaba
  • Sadeghi, Morteza
  • Torki-Harchegani, Mehdi

Abstract

In this work, energy and quality attributes for deep bed drying of paddy were studied. Drying experiments of freshly harvested paddy were conducted at different levels of drying air parameters including temperature (T=40, 50, 60, 70 and 80°C), velocity (V=0.5, 0.8 and 1.1ms−1) and relative humidity (RH=40%, 50%, 60% and 70%). It was observed that increasing temperature and velocity increased drying rate and higher levels of relative humidity led to longer drying durations. Total energy consumption ranged from 0.37kWh to 1.85kWh where the minimum and maximum values belonged to the experiments carried out at T=80°C, V=0.5ms−1 and RH=40%, and T=40°C, V=1.1ms−1 and RH=70%, respectively. The results of energy analysis showed that the energy efficiency was improved at higher temperatures, and lower levels of velocity and relative humidity for drying air. Furthermore, it was found that the number of fissured kernels was directly related to drying rate where damaged kernels increased with increasing drying rate.

Suggested Citation

  • Tohidi, Mojtaba & Sadeghi, Morteza & Torki-Harchegani, Mehdi, 2017. "Energy and quality aspects for fixed deep bed drying of paddy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 519-528.
  • Handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:519-528
    DOI: 10.1016/j.rser.2016.11.196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116309443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, G.P. & Prasad, Suresh, 2006. "Specific energy consumption in microwave drying of garlic cloves," Energy, Elsevier, vol. 31(12), pages 1921-1926.
    2. Torki-Harchegani, Mehdi & Ghanbarian, Davoud & Ghasemi Pirbalouti, Abdollah & Sadeghi, Morteza, 2016. "Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 407-418.
    3. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hui & Torki, Mehdi & Taherian, Arian & Beigi, Mohsen & Xiao, Hong-Mei & Fang, Xiao-Ming, 2023. "Analysis of exergetic performance for a combined ultrasonic power/convective hot air dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Cruz, Fernanda Paola Butarelli & Johann, Gracielle & de Oliveira, Kamila Cavalcante & Palú, Fernando & da Silva, Edson Antonio & Guirardello, Reginaldo & Curvelo Pereira, Nehemias, 2017. "Crambe grain drying: Evaluation of a linear and double resistance driving force model and energetic performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1-8.
    3. Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.
    4. Mondal, Md. Hasan Tarek & Sarker, Md. Sazzat Hossain, 2024. "Comprehensive energy analysis and environmental sustainability of industrial grain drying," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Ghanbarian, Davoud & Torki-Harchegani, Mehdi & Sadeghi, Morteza & Pirbalouti, Abdollah Ghasemi, 2020. "Ultrasonically improved convective drying of peppermint leaves: Influence on the process time and energetic indices," Renewable Energy, Elsevier, vol. 153(C), pages 67-73.
    6. Beigi, Mohsen & Torki-Harchegani, Mehdi & Tohidi, Mojtaba, 2017. "Experimental and ANN modeling investigations of energy traits for rough rice drying," Energy, Elsevier, vol. 141(C), pages 2196-2205.
    7. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    2. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    3. Evan Eduard Susanto & Agus Saptoro & Perumal Kumar & Angnes Ngieng Tze Tiong & Aditya Putranto & Suherman Suherman, 2024. "7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16363-16385, July.
    4. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    5. Abiodun Okunola & Timothy Adekanye & Endurance Idahosa, 2021. "Energy and exergy analyses of okra drying process in a forced convection cabinet dryer," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(1), pages 8-16.
    6. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    7. Cruz, Fernanda Paola Butarelli & Johann, Gracielle & de Oliveira, Kamila Cavalcante & Palú, Fernando & da Silva, Edson Antonio & Guirardello, Reginaldo & Curvelo Pereira, Nehemias, 2017. "Crambe grain drying: Evaluation of a linear and double resistance driving force model and energetic performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1-8.
    8. Erick César, López-Vidaña & Ana Lilia, César-Munguía & Octavio, García-Valladares & Orlando, Salgado Sandoval & Alfredo, Domínguez Niño, 2021. "Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L)," Energy, Elsevier, vol. 220(C).
    9. Marcin Dębowski & Przemysław Bukowski & Przemysław Kobel & Jerzy Bieniek & Leszek Romański & Bernard Knutel, 2021. "Comparison of Energy Consumption of Cereal Grain Dryer Powered by LPG and Hard Coal in Polish Conditions," Energies, MDPI, vol. 14(14), pages 1-17, July.
    10. Beigi, Mohsen & Torki-Harchegani, Mehdi & Tohidi, Mojtaba, 2017. "Experimental and ANN modeling investigations of energy traits for rough rice drying," Energy, Elsevier, vol. 141(C), pages 2196-2205.
    11. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
    12. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    13. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    14. Caglayan, Hasan & Caliskan, Hakan, 2017. "Sustainability assessment of heat exchanger units for spray dryers," Energy, Elsevier, vol. 124(C), pages 741-751.
    15. Ouaabou, Rachida & Nabil, Bouchra & Ouhammou, Mourad & Idlimam, Ali & Lamharrar, Abdelkader & Ennahli, Said & Hanine, Hafida & Mahrouz, Mostafa, 2020. "Impact of solar drying process on drying kinetics, and on bioactive profile of Moroccan sweet cherry," Renewable Energy, Elsevier, vol. 151(C), pages 908-918.
    16. Tagnamas, Zakaria & Lamsyehe, Hamza & Moussaoui, Haytem & Bahammou, Younes & Kouhila, Mounir & Idlimam, Ali & Lamharrar, Abdelkader, 2021. "Energy and exergy analyses of carob pulp drying system based on a solar collector," Renewable Energy, Elsevier, vol. 163(C), pages 495-503.
    17. Bahammou, Younes & Lamsyehe, Hamza & Kouhila, Mounir & Lamharrar, Abdelkader & Idlimam, Ali & Abdenouri, Naji, 2019. "Valorization of co-products of sardine waste by physical treatment under natural and forced convection solar drying," Renewable Energy, Elsevier, vol. 142(C), pages 110-122.
    18. Di Marco, Paolo & Frigo, Stefano & Gabbrielli, Roberto & Pecchia, Stefano, 2016. "Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper," Energy, Elsevier, vol. 114(C), pages 201-213.
    19. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    20. Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:519-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.