IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v185y2023ics1364032123004641.html
   My bibliography  Save this article

Analysis of exergetic performance for a combined ultrasonic power/convective hot air dryer

Author

Listed:
  • Wang, Hui
  • Torki, Mehdi
  • Taherian, Arian
  • Beigi, Mohsen
  • Xiao, Hong-Mei
  • Fang, Xiao-Ming

Abstract

Recently, the effectiveness of combined use of non-thermal technologies to improve hot air dryers’ performance from both the energy and quality point of views has been proven. However, no study has been reported on thermodynamic analysis of such hybrid systems. The present work dealt the influence of ultrasonic power combination with convective hot air dryer on exergetic performance of the system. Potato cubes were dried at different drying air temperatures (45–65 °C) and velocities (0.5–1.5 m/s) and ultrasonic powers (0–0.08 kW). Based on the findings obtained through the experiments, the exergy loss varied averagely from 240.58 to 600.83 kJ, and was decreased continuously with increasing the power level. The average exergy destruction ranged from 169.61 to 1554.23 kJ, and was decreased at the higher air temperatures and velocities. Combination of ultrasonic power with hot air intensified the exergy destruction. The average exergy efficiency varied from 24.19 to 91.42% and from 11.67 to 38.27% for the drying chamber and process, respectively.

Suggested Citation

  • Wang, Hui & Torki, Mehdi & Taherian, Arian & Beigi, Mohsen & Xiao, Hong-Mei & Fang, Xiao-Ming, 2023. "Analysis of exergetic performance for a combined ultrasonic power/convective hot air dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004641
    DOI: 10.1016/j.rser.2023.113607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghanbarian, Davoud & Torki-Harchegani, Mehdi & Sadeghi, Morteza & Pirbalouti, Abdollah Ghasemi, 2020. "Ultrasonically improved convective drying of peppermint leaves: Influence on the process time and energetic indices," Renewable Energy, Elsevier, vol. 153(C), pages 67-73.
    2. Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Tohidi, Mojtaba & Sadeghi, Morteza & Torki-Harchegani, Mehdi, 2017. "Energy and quality aspects for fixed deep bed drying of paddy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 519-528.
    4. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    5. Ranjbaran, M. & Zare, D., 2013. "Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans," Energy, Elsevier, vol. 59(C), pages 484-493.
    6. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).
    2. Abiodun Okunola & Timothy Adekanye & Endurance Idahosa, 2021. "Energy and exergy analyses of okra drying process in a forced convection cabinet dryer," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 67(1), pages 8-16.
    3. Bin Li & Changyou Li & Tao Li & Zhiheng Zeng & Wenyan Ou & Chengjie Li, 2019. "Exergetic, Energetic, and Quality Performance Evaluation of Paddy Drying in a Novel Industrial Multi-Field Synergistic Dryer," Energies, MDPI, vol. 12(23), pages 1-19, December.
    4. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    5. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    6. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    7. Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
    8. Di Marco, Paolo & Frigo, Stefano & Gabbrielli, Roberto & Pecchia, Stefano, 2016. "Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper," Energy, Elsevier, vol. 114(C), pages 201-213.
    9. Abiodun A. Okunola & Timothy A. Adekanye & Clinton E. Okonkwo & Mohammad Kaveh & Mariusz Szymanek & Endurance O. Idahosa & Adeniyi T. Olayanju & Krystyna Wojciechowska, 2023. "Drying Characteristics, Kinetic Modeling, Energy and Exergy Analyses of Water Yam ( Dioscorea alata ) in a Hot Air Dryer," Energies, MDPI, vol. 16(4), pages 1-21, February.
    10. Gluesenkamp, Kyle R. & Boudreaux, Philip & Patel, Viral K. & Goodman, Dakota & Shen, Bo, 2019. "An efficient correlation for heat and mass transfer effectiveness in tumble-type clothes dryer drums," Energy, Elsevier, vol. 172(C), pages 1225-1242.
    11. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    12. Caglayan, Hasan & Caliskan, Hakan, 2017. "Sustainability assessment of heat exchanger units for spray dryers," Energy, Elsevier, vol. 124(C), pages 741-751.
    13. Zahra Parhizi & Hamed Karami & Iman Golpour & Mohammad Kaveh & Mariusz Szymanek & Ana M. Blanco-Marigorta & José Daniel Marcos & Esmail Khalife & Stanisław Skowron & Nashwan Adnan Othman & Yousef Darv, 2022. "Modeling and Optimization of Energy and Exergy Parameters of a Hybrid-Solar Dryer for Basil Leaf Drying Using RSM," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    14. Mondal, Md. Hasan Tarek & Sarker, Md. Sazzat Hossain, 2024. "Comprehensive energy analysis and environmental sustainability of industrial grain drying," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    16. Hadibi, Tarik & Mennouche, Djamel & Boubekri, Abdelghani & Chouicha, Samira & Arıcı, Müslüm & Yunfeng, Wang & Ming, Li & Fang-ling, Fan, 2023. "Drying characteristic, sustainability, and 4E (energy, exergy, and enviro-economic) analysis of dried date fruits using indirect solar-electric dryer: An experimental investigation," Renewable Energy, Elsevier, vol. 218(C).
    17. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    18. Jankowiak, Lena & Jonkman, Jochem & Rossier-Miranda, Francisco J. & van der Goot, Atze Jan & Boom, Remko M., 2014. "Exergy driven process synthesis for isoflavone recovery from okara," Energy, Elsevier, vol. 74(C), pages 471-483.
    19. Sivakumar, R. & Saravanan, R. & Elaya Perumal, A. & Iniyan, S., 2016. "Fluidized bed drying of some agro products – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 280-301.
    20. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2016. "On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II)," Energy, Elsevier, vol. 96(C), pages 507-520.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:185:y:2023:i:c:s1364032123004641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.