IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v68y2017ip1p525-540.html
   My bibliography  Save this article

From occupancy to occupant behavior: An analytical survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for building energy efficiency

Author

Listed:
  • Jia, Mengda
  • Srinivasan, Ravi S.
  • Raheem, Adeeba A.

Abstract

Energy consumption and indoor environment of buildings are proved to be largely influenced by the presence and behaviors of occupants. The uncertainty caused by occupant behaviors accounts for a significant discrepancy between the predicted and actual energy usage. In a real world, building system operations and control will be directly affected by occupant behavior, which may lead to over thirty percent waste against building's designed performance. Therefore, the capability to seamlessly integrate occupant behavior in energy simulation tools and building management systems in the future is clearly important to optimize building energy use while maintaining the same level of services. However, research has not reached the phase that occupant behaviors could be effectively modeled. Thus, the traditional schedule based approach is not adequate to satisfy the needs of building efficiency. In this paper, a thorough survey of occupant behavior modeling and simulation state-of-the-art technologies and methodologies for building energy efficiency is conducted. The paper first identifies and discusses the significance and application scale of building occupant behavior model. Based on the information collected, some recent data acquisition technologies for behavior-related research and occupant behavior modeling approaches are summarized. The advantages and limitations of these modeling methods are compared and analyzed, as well as appropriate recommendations are made for the future research. The paper finally outlines the findings and potential development areas in the field of occupant behavior modeling for energy efficient buildings.

Suggested Citation

  • Jia, Mengda & Srinivasan, Ravi S. & Raheem, Adeeba A., 2017. "From occupancy to occupant behavior: An analytical survey of data acquisition technologies, modeling methodologies and simulation coupling mechanisms for building energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 525-540.
  • Handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:525-540
    DOI: 10.1016/j.rser.2016.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116306608
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    2. Li, Nan & Li, Juncheng & Fan, Ruijuan & Jia, Hongyuan, 2015. "Probability of occupant operation of windows during transition seasons in office buildings," Renewable Energy, Elsevier, vol. 73(C), pages 84-91.
    3. Yu, Zhun (Jerry) & Haghighat, Fariborz & Fung, Benjamin C.M. & Morofsky, Edward & Yoshino, Hiroshi, 2011. "A methodology for identifying and improving occupant behavior in residential buildings," Energy, Elsevier, vol. 36(11), pages 6596-6608.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    2. Keyvanfar, Ali & Shafaghat, Arezou & Abd Majid, Muhd Zaimi & Bin Lamit, Hasanuddin & Warid Hussin, Mohd & Binti Ali, Kherun Nita & Dhafer Saad, Alshahri, 2014. "User satisfaction adaptive behaviors for assessing energy efficient building indoor cooling and lighting environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 277-295.
    3. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    4. Marzullo, Thibault & Keane, Marcus M. & Geron, Marco & Monaghan, Rory F.D., 2019. "A computational toolchain for the automatic generation of multiple Reduced-Order Models from CFD simulations," Energy, Elsevier, vol. 180(C), pages 511-519.
    5. Bishnu Nepal & Motoi Yamaha & Hiroya Sahashi & Aya Yokoe, 2019. "Analysis of Building Electricity Use Pattern Using K-Means Clustering Algorithm by Determination of Better Initial Centroids and Number of Clusters," Energies, MDPI, vol. 12(12), pages 1-17, June.
    6. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    7. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    8. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.
    9. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    10. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    11. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    12. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    13. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    14. Andrew Izawa & Matthias Fripp, 2018. "Multi-Objective Control of Air Conditioning Improves Cost, Comfort and System Energy Balance," Energies, MDPI, vol. 11(9), pages 1-18, September.
    15. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    16. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    17. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    18. Rouleau, Jean & Gosselin, Louis, 2020. "Probabilistic window opening model considering occupant behavior diversity: A data-driven case study of Canadian residential buildings," Energy, Elsevier, vol. 195(C).
    19. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
    20. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:525-540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.