IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v133y2020ics1364032120305670.html
   My bibliography  Save this article

Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells

Author

Listed:
  • Leicester, Daniel
  • Amezaga, Jaime
  • Heidrich, Elizabeth

Abstract

Bioelectrochemical systems (BESs) have the potential to produce energy from wastewater. However, they are far from ready to be applied into industry. The development of large and pilot-scale systems to harness energy and value-added chemicals is widely regarded as one of the greatest research challenges in this field. There are several reasons for this: i) they are expensive, ii) they are difficult to engineer, iii) the data that can be derived from them is often limited, rarely in duplicate, and is disproportionate to the time commitment. Given these restrictions, systematic reviews of large and pilot-scale systems can be helpful in determining the direction of future research. These reviews need to standardise very different reactor set-ups, operational conditions, and methods of reporting data. Here we present an analysis of the energy production from semi-pilot and pilot-scale BESs, and benchmark their performance against existing wastewater treatment. The parameters used include complexity of wastewater; chemical oxygen demand (COD) loading rate; conductivity; reactor depth; volumetric treatment rate; effluent quality; energetic treatment balance; and temperature. We find that factors which are perceived to be problematic, such as low conductivities and temperatures, have been overcome by BESs at pilot-scale, and that these systems have met the regulatory requirements for discharge standards. We identify reactor depth and volumetric treatment rate as the areas for future research to focus on. The first of these issues will need an engineering solution, while the second is likely to come from improved understanding of the complex microbial digestion pathways. Material science may help both. Importantly, these pilot studies have shown that renewable energy production from wastewater is possible, and with targeted future research, could become a reality.

Suggested Citation

  • Leicester, Daniel & Amezaga, Jaime & Heidrich, Elizabeth, 2020. "Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305670
    DOI: 10.1016/j.rser.2020.110279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120305670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khoshnevisan, Benyamin & Tabatabaei, Meisam & Tsapekos, Panagiotis & Rafiee, Shahin & Aghbashlo, Mortaza & Lindeneg, Susanne & Angelidaki, Irini, 2020. "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    2. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    3. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    4. Slate, Anthony J. & Whitehead, Kathryn A. & Brownson, Dale A.C. & Banks, Craig E., 2019. "Microbial fuel cells: An overview of current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 60-81.
    5. Luo, Shuai & Jain, Akshay & Aguilera, Anibal & He, Zhen, 2017. "Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell," Applied Energy, Elsevier, vol. 206(C), pages 879-886.
    6. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    7. Kadier, Abudukeremu & Simayi, Yibadatihan & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Hamid, Aidil Abdul, 2014. "A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas," Renewable Energy, Elsevier, vol. 71(C), pages 466-472.
    8. Escapa, A. & Mateos, R. & Martínez, E.J. & Blanes, J., 2016. "Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 942-956.
    9. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    10. Zhang, Ying & Liu, Mengmeng & Zhou, Minghua & Yang, Huijia & Liang, Liang & Gu, Tingyue, 2019. "Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 13-29.
    11. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.
    12. Hindatu, Y. & Annuar, M.S.M. & Gumel, A.M., 2017. "Mini-review: Anode modification for improved performance of microbial fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 236-248.
    13. Pant, Deepak & Singh, Anoop & Van Bogaert, Gilbert & Gallego, Yolanda Alvarez & Diels, Ludo & Vanbroekhoven, Karolien, 2011. "An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1305-1313, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johanna C. Winder & Mark Hewlett & Ping Liu & John Love, 2022. "Conversion of Biomass to Chemicals via Electrofermentation of Lactic Acid Bacteria," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Liu, Qipeng & Li, Ran & Dereli, Recep Kaan & Flynn, Damian & Casey, Eoin, 2022. "Water resource recovery facilities as potential energy generation units and their dynamic economic dispatch," Applied Energy, Elsevier, vol. 318(C).
    3. Lin, Richen & O'Shea, Richard & Deng, Chen & Wu, Benteng & Murphy, Jerry D., 2021. "A perspective on the efficacy of green gas production via integration of technologies in novel cascading circular bio-systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. René Alejandro Flores-Estrella & Victor Alcaraz-Gonzalez & Andreas Haarstrick, 2022. "A Catalytic Effectiveness Factor for a Microbial Electrolysis Cell Biofilm Model," Energies, MDPI, vol. 15(11), pages 1-18, June.
    5. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    2. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    3. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Ahmed, Shams Forruque & Mofijur, M. & Islam, Nafisa & Parisa, Tahlil Ahmed & Rafa, Nazifa & Bokhari, Awais & Klemeš, Jiří Jaromír & Indra Mahlia, Teuku Meurah, 2022. "Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater," Energy, Elsevier, vol. 254(PA).
    5. AlSayed, Ahmed & Soliman, Moomen & Eldyasti, Ahmed, 2020. "Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    7. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    8. Beegle, Jeffrey R. & Borole, Abhijeet P., 2018. "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 343-351.
    9. Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
    10. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    11. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    12. Parkhey, Piyush & Gupta, Pratima, 2017. "Improvisations in structural features of microbial electrolytic cell and process parameters of electrohydrogenesis for efficient biohydrogen production: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1085-1099.
    13. Liu, Hong-zhou & Chen, Tie-zhu & Wang, Nan & Zhang, Yu-rui & Li, Jian-chang, 2024. "A new strategy for improving MFC power output by shared electrode MFC–MEC coupling," Applied Energy, Elsevier, vol. 359(C).
    14. Shen, Ruixia & Jiang, Yong & Ge, Zheng & Lu, Jianwen & Zhang, Yuanhui & Liu, Zhidan & Ren, Zhiyong Jason, 2018. "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation," Applied Energy, Elsevier, vol. 212(C), pages 509-515.
    15. Escapa, A. & Mateos, R. & Martínez, E.J. & Blanes, J., 2016. "Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 942-956.
    16. Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.
    17. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Jafar Ali & Aaqib Sohail & Lei Wang & Muhammad Rizwan Haider & Shahi Mulk & Gang Pan, 2018. "Electro-Microbiology as a Promising Approach Towards Renewable Energy and Environmental Sustainability," Energies, MDPI, vol. 11(7), pages 1-30, July.
    19. Ding, Lingkan & Wang, Yuchuan & Lin, Hongjian & van Lierop, Leif & Hu, Bo, 2022. "Facilitating solid-state anaerobic digestion of food waste via bio-electrochemical treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    20. Oliot, Manon & Galier, Sylvain & Roux de Balmann, Hélène & Bergel, Alain, 2016. "Ion transport in microbial fuel cells: Key roles, theory and critical review," Applied Energy, Elsevier, vol. 183(C), pages 1682-1704.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.