IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v166y2022ics1364032122005305.html
   My bibliography  Save this article

Facilitating solid-state anaerobic digestion of food waste via bio-electrochemical treatment

Author

Listed:
  • Ding, Lingkan
  • Wang, Yuchuan
  • Lin, Hongjian
  • van Lierop, Leif
  • Hu, Bo

Abstract

Food waste has become a global environmental concern over emissions of greenhouse gas and odorous pollutants. Anaerobic digestion is gaining increasing attention as an effective food waste disposal method combining waste minimization and bioenergy recovery. Solid-state anaerobic digestion can handle food waste containing high contents of solids and has the merits of higher disposal volumes and less parasitic energy input, however, the low energy/mass transfer impairs the treatment efficiency. This study incorporated bio-electrochemical treatment into solid-state anaerobic digestion of food waste to overcome these shortcomings for enhanced performances. Food waste liquid leachate was used as feedstock to validate the bio-electrochemical treatment effects under different conditions. At a low applied voltage of 0.7 V and initial pH of 8.13, the methane yield increased by 77.5% while the carbon dioxide yield decreased by 16.0% compared with the control without electrodes. Although higher voltages (1.1–2.0 V) contributed to higher methane and hydrogen yields, the fast consumption and breakages of anodes significantly decreased the treatment consistency and material lifespan. Thereby, 0.7 V was selected as the applied voltage when incorporating the bio-electrochemical unit into the solid-state digester treating food waste. Cathodic hydroxide generation increased the buffering capacity, thus contributing to a more stable start-up process. With an immersed electrode surface area of 25.2 cm2/L, the highest methane yield of 526.7 mL/gVS was recorded with lower carbon dioxide and hydrogen contents initially, and the peak gaseous hydrogen sulfide emission was significantly reduced by 71.5% mainly due to the ferrous ions release from low carbon steel anode for sulfide precipitation.

Suggested Citation

  • Ding, Lingkan & Wang, Yuchuan & Lin, Hongjian & van Lierop, Leif & Hu, Bo, 2022. "Facilitating solid-state anaerobic digestion of food waste via bio-electrochemical treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:rensus:v:166:y:2022:i:c:s1364032122005305
    DOI: 10.1016/j.rser.2022.112637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122005305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prajapati, Kalp Bhusan & Singh, Rajesh, 2020. "Bio-electrochemically hydrogen and methane production from co-digestion of wastes," Energy, Elsevier, vol. 198(C).
    2. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    3. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    5. Li, Yebo & Park, Stephen Y. & Zhu, Jiying, 2011. "Solid-state anaerobic digestion for methane production from organic waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 821-826, January.
    6. Jun-Gyu Park & Won-Beom Shin & Wei-Qi Shi & Hang-Bae Jun, 2019. "Changes of Bacterial Communities in an Anaerobic Digestion and a Bio-Electrochemical Anaerobic Digestion Reactors According to Organic Load," Energies, MDPI, vol. 12(15), pages 1-11, August.
    7. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    8. Srisowmeya, G. & Chakravarthy, M. & Nandhini Devi, G., 2020. "Critical considerations in two-stage anaerobic digestion of food waste – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    10. Beegle, Jeffrey R. & Borole, Abhijeet P., 2018. "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 343-351.
    11. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    12. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Kothari, Richa & Pandey, A.K. & Kumar, S. & Tyagi, V.V. & Tyagi, S.K., 2014. "Different aspects of dry anaerobic digestion for bio-energy: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 174-195.
    15. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    2. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    3. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Zhang, Jingxin & Loh, Kai-Chee & Li, Wangliang & Lim, Jun Wei & Dai, Yanjun & Tong, Yen Wah, 2017. "Three-stage anaerobic digester for food waste," Applied Energy, Elsevier, vol. 194(C), pages 287-295.
    5. Miguel Casallas-Ojeda & Luz Elba Torres-Guevara & Diana M. Caicedo-Concha & María F. Gómez, 2021. "Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    6. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    8. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Zhang, Cunsheng & Kang, Xinxin & Wang, Fenghuan & Tian, Yufei & Liu, Tao & Su, Yanyan & Qian, Tingting & Zhang, Yifeng, 2020. "Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform," Energy, Elsevier, vol. 208(C).
    10. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    11. Bertasini, Davide & Battista, Federico & Rizzioli, Fabio & Frison, Nicola & Bolzonella, David, 2023. "Decarbonization of the European natural gas grid using hydrogen and methane biologically produced from organic waste: A critical overview," Renewable Energy, Elsevier, vol. 206(C), pages 386-396.
    12. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    13. Matheri, Anthony Njuguna & Sethunya, Vuiswa Lucia & Belaid, Mohamed & Muzenda, Edison, 2018. "Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2328-2334.
    14. Abdullah Nsair & Senem Onen Cinar & Ayah Alassali & Hani Abu Qdais & Kerstin Kuchta, 2020. "Operational Parameters of Biogas Plants: A Review and Evaluation Study," Energies, MDPI, vol. 13(15), pages 1-27, July.
    15. Fernandes, Daniel J. & Ferreira, Ana F. & Fernandes, Edgar C., 2023. "Biogas and biomethane production potential via anaerobic digestion of manure: A case study of Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    17. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    19. Wang, Zhongzhong & Hu, Yuansheng & Wang, Shun & Wu, Guangxue & Zhan, Xinmin, 2023. "A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    20. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:166:y:2022:i:c:s1364032122005305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.