IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v50y2015icp1239-1253.html
   My bibliography  Save this article

Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—A review

Author

Listed:
  • De Bhowmick, Goldy
  • Koduru, Lokanand
  • Sen, Ramkrishna

Abstract

Microalgae have recently emerged as the most favorite feedstock for triacylglycerol (TAG), the storage neutral lipid, for renewable and sustainable production of biodiesel, mainly due to their comparable lipid contents, faster growth rates and lesser land requirements as compared to the non-conventional and non-edible oilseed crops. But the real technological challenge is to mass produce microalgae with much higher lipid content to make the production of a low-value-high-volume product like biodiesel economically viable and environmentally sustainable. Recent scientific achievements in TAG overproduction in higher eukaryotic systems may be leveraged upon to enhance lipid synthesis by manifold in microalgae. Since the available sequence homology information have been effectively used in case of the model unicellular green alga, Chlamydomonas reinhardtii to perform genome-scale metabolic reconstructions, the gained knowledge and the well established genetic engineering tools and techniques coupled with the modern system biology approaches may well pave the way for delineating and deciphering the TAG biosynthetic pathways in lipid accumulating microalgae as targets for metabolic pathway engineering. This review thus analyzes the trends and developments in the area of metabolic engineering of lipid synthesis in microalgae and discusses the vision based on some of the possible strategies that could be adopted to reconstruct a stable modified engineered microalga with enhanced lipid producing capabilities. The strategies include flux balance analysis for target gene identification, over expression of the target enzymes involved in lipid biosynthesis, over expression of the target gene under specific inducible promoters, constitutive expression of transcription regulators, diverting the flux of key metabolites, and integrated in silico based approaches. An integrated approach involving multiple gene targeting by applying the principles and knowledge of systems biology and bioinformatics would provide us with a holistic view and help derive some feasible solutions.

Suggested Citation

  • De Bhowmick, Goldy & Koduru, Lokanand & Sen, Ramkrishna, 2015. "Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1239-1253.
  • Handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:1239-1253
    DOI: 10.1016/j.rser.2015.04.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. MacGregor Smith & Stanley Gershwin & Chrissoleon Papadopoulos, 2000. "Preface," Annals of Operations Research, Springer, vol. 93(1), pages 0, January.
    2. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    3. Chattopadhyay, Soham & Das, Sancharini & Sen, Ramkrishna, 2011. "Rapid and precise estimation of biodiesel by high performance thin layer chromatography," Applied Energy, Elsevier, vol. 88(12), pages 5188-5192.
    4. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    5. Bozbas, Kahraman, 2008. "Biodiesel as an alternative motor fuel: Production and policies in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 542-552, February.
    6. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    7. Tabatabaei, Meisam & Tohidfar, Masoud & Jouzani, Gholamreza Salehi & Safarnejad, Mohammadreza & Pazouki, Mohammad, 2011. "Biodiesel production from genetically engineered microalgae: Future of bioenergy in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1918-1927, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    2. Zahra Shokravi & Hoofar Shokravi & Ong Hwai Chyuan & Woei Jye Lau & Seyed Saeid Rahimian Koloor & Michal Petrů & Ahmad Fauzi Ismail, 2020. "Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review," Sustainability, MDPI, vol. 12(21), pages 1-28, October.
    3. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    4. Chung, Young-Soo & Lee, Jin-Woo & Chung, Chung-Han, 2017. "Molecular challenges in microalgae towards cost-effective production of quality biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 139-144.
    5. Nugroho Adi Sasongko & Ryozo Noguchi & Junko Ito & Mikihide Demura & Sosaku Ichikawa & Mitsutoshi Nakajima & Makoto M. Watanabe, 2018. "Engineering Study of a Pilot Scale Process Plant for Microalgae-Oil Production Utilizing Municipal Wastewater and Flue Gases: Fukushima Pilot Plant," Energies, MDPI, vol. 11(7), pages 1-24, June.
    6. Singh, Poonam & Kumari, Sheena & Guldhe, Abhishek & Misra, Rohit & Rawat, Ismail & Bux, Faizal, 2016. "Trends and novel strategies for enhancing lipid accumulation and quality in microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1-16.
    7. Li, Pengfei & Sun, Xin & Sun, Zhe & Huang, Feng & Wei, Wenqian & Liu, Xingshe & Liu, Yongjun & Deng, Linyu & Cheng, Zhiwen, 2021. "Biochemical and genetic changes revealing the enhanced lipid accumulation in Desmodesmus sp. mutated by atmospheric and room temperature plasma," Renewable Energy, Elsevier, vol. 172(C), pages 368-381.
    8. Majidian, Parastoo & Tabatabaei, Meisam & Zeinolabedini, Mehrshad & Naghshbandi, Mohammad Pooya & Chisti, Yusuf, 2018. "Metabolic engineering of microorganisms for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3863-3885.
    9. Behera, Bunushree & Unpaprom, Yuwalee & Ramaraj, Rameshprabu & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj & Paramasivan, Balasubramanian, 2021. "Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    2. Naeini, Mina Alavi & Zandieh, Mostafa & Najafi, Seyyed Esmaeil & Sajadi, Seyed Mojtaba, 2020. "Analyzing the development of the third-generation biodiesel production from microalgae by a novel hybrid decision-making method: The case of Iran," Energy, Elsevier, vol. 195(C).
    3. Ankita Juneja & Ruben Michael Ceballos & Ganti S. Murthy, 2013. "Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review," Energies, MDPI, vol. 6(9), pages 1-32, September.
    4. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    5. Senem Onen Cinar & Zhi Kai Chong & Mehmet Ali Kucuker & Nils Wieczorek & Ugur Cengiz & Kerstin Kuchta, 2020. "Bioplastic Production from Microalgae: A Review," IJERPH, MDPI, vol. 17(11), pages 1-21, May.
    6. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    7. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    8. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    9. Katiyar, Richa & Gurjar, B.R. & Biswas, Shalini & Pruthi, Vikas & Kumar, Nalin & Kumar, Prashant, 2017. "Microalgae: An emerging source of energy based bio-products and a solution for environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1083-1093.
    10. Adeniyi, Oladapo Martins & Azimov, Ulugbek & Burluka, Alexey, 2018. "Algae biofuel: Current status and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 316-335.
    11. Antonio Franco & Carmen Scieuzo & Rosanna Salvia & Anna Maria Petrone & Elena Tafi & Antonio Moretta & Eric Schmitt & Patrizia Falabella, 2021. "Lipids from Hermetia illucens , an Innovative and Sustainable Source," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    12. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    13. Kulvinder Bajwa & Narsi R Bishnoi & Anita Kirrolia, 2018. "Evaluation of Nutrient Stress (Nitrogen, Phosphorus Regimes) on Physio-Biochemical Parameters of Oleaginous Micro algal Strains and SEM Study under Nutrient Stress," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 10(1), pages 01-07, April.
    14. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    15. kumar, Mukesh & Sharma, Mahendra Pal, 2016. "Selection of potential oils for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1129-1138.
    16. Sigita Vaičiulytė & Giulia Padovani & Jolanta Kostkevičienė & Pietro Carlozzi, 2014. "Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity," Energies, MDPI, vol. 7(6), pages 1-18, June.
    17. Tandon, Puja & Jin, Qiang, 2017. "Microalgae culture enhancement through key microbial approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1089-1099.
    18. Cherng-Yuan Lin & Bo-Yu Lin, 2015. "Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method," Energies, MDPI, vol. 8(2), pages 1-12, February.
    19. Joseph Antony Sundarsingh Tensingh & Vijayalakshmi Shankar, 2022. "Sustainable Production of Biodiesel Using UV Mutagenesis as a Strategy to Enhance the Lipid Productivity in R. mucilaginosa," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    20. Chakrabarti, Mohammed Harun & Ali, Mehmood & Usmani, Jafar Nazir & Khan, Nasim Ahmed & Hasan, Diya'uddeen Basheer & Islam, Md. Sakinul & Abdul Raman, Abdul Aziz & Yusoff, Rozita & Irfan, Muhammad Fais, 2012. "Status of biodiesel research and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4396-4405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:1239-1253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.