IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v53y2016icp1591-1601.html
   My bibliography  Save this article

DME blended LPG as a cooking fuel option for Indian household: A review

Author

Listed:
  • Arya, P.K.
  • Tupkari, S.
  • K., Satish
  • Thakre, G.D.
  • Shukla, B.M.

Abstract

This paper reviews the present scenario of cooking fuel in India. Increasing demand of LPG and its impact on Indian economy has been discussed. In context to the current cooking fuel scenario in India, DME blended LPG has been recognized as a potential fuel substitute for LPG. To analyse the potential of DME as a fuel, the review compares its properties with those of propane, butane and natural gas that are relevant to combustion application. Current status of DME combustion research, related to combustion mechanism, laminar burning velocity and characteristics of premixed and diffused flames of DME has been reviewed in detail. Current status of DME–LPG blend performance has also been reviewed. Based on this current review, bio-DME has been identified as most suitable form of DME production for India. However, need for further optimization of DME–LPG blend ratio, development of reduced mechanism for DME–LPG oxidation, further study of DME diffusion flame and development of DME–LPG blend dedicated burner has been identified as major challenges towards making DME as a substitute blending fuel for LPG.

Suggested Citation

  • Arya, P.K. & Tupkari, S. & K., Satish & Thakre, G.D. & Shukla, B.M., 2016. "DME blended LPG as a cooking fuel option for Indian household: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1591-1601.
  • Handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:1591-1601
    DOI: 10.1016/j.rser.2015.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115009776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unknown, 2008. "Front Materials," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(4), pages 1-3.
    2. Unknown, 2008. "Front Materials," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-3.
    3. Unknown, 2008. "Front Materials," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(2), pages 1-3.
    4. Tamir, Abraham & Elperin, Ida & Yotzer, Shlomo, 1989. "Performance characteristics of a gas burner with a swirling central flame," Energy, Elsevier, vol. 14(7), pages 373-382.
    5. Pantangi, V.K. & Mishra, Subhash C. & Muthukumar, P. & Reddy, Rajesh, 2011. "Studies on porous radiant burners for LPG (liquefied petroleum gas) cooking applications," Energy, Elsevier, vol. 36(10), pages 6074-6080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Peng & Liu, Zhenyi & Li, Mingzhi & Zhao, Yao & Li, Pengliang & Li, Shuhong & Li, Yingke, 2022. "Experimental study of effect of equivalence ratio and initial turbulence on the explosion characteristics of LPG/DME clean blended fuel," Energy, Elsevier, vol. 250(C).
    2. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enescu, Diana & Virjoghe, Elena Otilia, 2014. "A review on thermoelectric cooling parameters and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 903-916.
    2. Mohamed Amine Zoui & Saïd Bentouba & John G. Stocholm & Mahmoud Bourouis, 2020. "A Review on Thermoelectric Generators: Progress and Applications," Energies, MDPI, vol. 13(14), pages 1-32, July.
    3. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    4. Wang, Junyi & Wang, Yuan & Su, Shanhe & Chen, Jincan, 2017. "Simulation design and performance evaluation of a thermoelectric refrigerator with inhomogeneously-doped nanomaterials," Energy, Elsevier, vol. 121(C), pages 427-432.
    5. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    6. Liu, Xiaoli & Jani, Ruchita & Orisakwe, Esther & Johnston, Conrad & Chudzinski, Piotr & Qu, Ming & Norton, Brian & Holmes, Niall & Kohanoff, Jorge & Stella, Lorenzo & Yin, Hongxi & Yazawa, Kazuaki, 2021. "State of the art in composition, fabrication, characterization, and modeling methods of cement-based thermoelectric materials for low-temperature applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Nair, Aswathy & Velamati, Ratna Kishore & Kumar, Sudarshan, 2016. "Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures," Energy, Elsevier, vol. 100(C), pages 145-153.
    8. Wichangarm, Mana & Matthujak, Anirut & Sriveerakul, Thanarath & Sucharitpwatskul, Sedthawatt & Phongthanapanich, Sutthisak, 2020. "Investigation on thermal efficiency of LPG cooking burner using computational fluid dynamics," Energy, Elsevier, vol. 203(C).
    9. Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
    10. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    11. Panigrahy, Snehasish & Mishra, Subhash C., 2018. "The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application," Energy, Elsevier, vol. 150(C), pages 176-189.
    12. Bakry, Ayman I. & Rabea, Karim & El-Fakharany, Magda, 2020. "Starting up implication of the two-region porous inert medium (PIM) burners," Energy, Elsevier, vol. 201(C).
    13. Sutar, Kailasnath B. & M.R., Ravi & Kohli, Sangeeta, 2016. "Design of a partially aerated naturally aspirated burner for producer gas," Energy, Elsevier, vol. 116(P1), pages 773-785.
    14. Muthukumar Palanisamy & Lav Kumar Kaushik & Arun Kumar Mahalingam & Sunita Deb & Pratibha Maurya & Sofia Rani Shaik & Muhammad Abdul Mujeebu, 2023. "Evolutions in Gaseous and Liquid Fuel Cook-Stove Technologies," Energies, MDPI, vol. 16(2), pages 1-37, January.
    15. Akter Lucky, Rahima & Hossain, Ijaz, 2001. "Efficiency study of Bangladeshi cookstoves with an emphasis on gas cookstoves," Energy, Elsevier, vol. 26(3), pages 221-237.
    16. Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
    17. Smith, Kirk R. & Sagar, Ambuj, 2014. "Making the clean available: Escaping India’s Chulha Trap," Energy Policy, Elsevier, vol. 75(C), pages 410-414.
    18. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    19. Munoz-Herrera, Claudio & Hernández, Christian & Rojas, Paula & Bernal, Luciano & Monzó, Cristóbal & Cartagena, Rodrigo & Ripoll, Nicolás & Toledo, Mario, 2023. "Experimental investigation of the co-combustion of LPG-hydrogen blends on LPG-fueled systems," Energy, Elsevier, vol. 284(C).
    20. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:1591-1601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.