IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp897-906.html
   My bibliography  Save this article

Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost

Author

Listed:
  • Guerrero Moreno, Nayibe
  • Cisneros Molina, Myriam
  • Gervasio, Dominic
  • Pérez Robles, Juan Francisco

Abstract

Cost analyses developed for fuel cells are reviewed, focusing mainly on polymer electrolyte membrane fuel cell (PEMFC) technology, because the solid polymer membrane electrolyte is robust and operates under conditions needed for most pressing applications, especially for the automotive application. Presently, PEMFC cost is still too high for large scale commercialization. The cost of electrodes and membranes contributes substantially to the total PEMFC cost which is driving research to reduce the costs of these components so the PEMFC can be introduced into large scale power markets. A scenario analysis for PEMFC costs for an automotive application illustrates that reducing the MEA cost up to 27% makes achievable the $40/kW cost target by 2020, which corresponds to a reduction in the cost of the catalyst by $3.55/kW and the membrane by $0.8/kW. The ultimate cost target for the PEMFC of 30/kW is obtained when the MEA cost is reduced by 45%, which corresponds to a projected cost reduction for catalyst cost by $6.41/kW and membrane by $1.44/kW. If these costs are met, the PEMFC would reach a price which is cost competitive to Internal Combustion Engine Vehicles which would allow the use of PEMFCs for power generation in a significant number of sectors.

Suggested Citation

  • Guerrero Moreno, Nayibe & Cisneros Molina, Myriam & Gervasio, Dominic & Pérez Robles, Juan Francisco, 2015. "Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 897-906.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:897-906
    DOI: 10.1016/j.rser.2015.07.157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115008047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
    2. Obara, Shin’ya, 2007. "Equipment arrangement planning of a fuel cell energy network optimized for cost minimization," Renewable Energy, Elsevier, vol. 32(3), pages 382-406.
    3. Colin J. Cockroft & Anthony D. Owen, 2007. "The Economics of Hydrogen Fuel Cell Buses," The Economic Record, The Economic Society of Australia, vol. 83(263), pages 359-370, December.
    4. Hwang, Jenn-Jiang, 2013. "Sustainability study of hydrogen pathways for fuel cell vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 220-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Xingying & Jian, Qifei, 2023. "Experimental study of a passive thermal management system using vapor chamber for proton exchange membrane fuel cell stack," Renewable Energy, Elsevier, vol. 216(C).
    2. Wan, Yue & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Design and optimization of gradient wettability pore structure of adaptive PEM fuel cell cathode catalyst layer," Applied Energy, Elsevier, vol. 312(C).
    3. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Zhang, Yang & Campana, Pietro Elia & Lundblad, Anders & Yan, Jinyue, 2017. "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied Energy, Elsevier, vol. 201(C), pages 397-411.
    5. Laoun, Brahim & Kasat, Harshal A. & Ahmad, Riaz & Kannan, Arunachala M., 2018. "Gas diffusion layer development using design of experiments for the optimization of a proton exchange membrane fuel cell performance," Energy, Elsevier, vol. 151(C), pages 689-695.
    6. Luo, Lizhong & Huang, Bi & Bai, Xingying & Cheng, Zongyi & Jian, Qifei, 2020. "Temperature uniformity improvement of a proton exchange membrane fuel cell stack with ultra-thin vapor chambers," Applied Energy, Elsevier, vol. 270(C).
    7. Yang, Bo & Li, Danyang & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Wang, Jingbo & Shu, Hongchun & Yu, Tao & Zhu, Jiawei, 2021. "Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms," Energy, Elsevier, vol. 228(C).
    8. Yin, Cong & Gao, Yan & Li, Ting & Xie, Guangyou & Li, Kai & Tang, Hao, 2020. "Study of internal multi-parameter distributions of proton exchange membrane fuel cell with segmented cell device and coupled three-dimensional model," Renewable Energy, Elsevier, vol. 147(P1), pages 650-662.
    9. Stacy, John & Regmi, Yagya N. & Leonard, Brian & Fan, Maohong, 2017. "The recent progress and future of oxygen reduction reaction catalysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 401-414.
    10. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Minsoo Choi & Wongwan Jung & Sanghyuk Lee & Taehwan Joung & Daejun Chang, 2021. "Thermal Efficiency and Economics of a Boil-Off Hydrogen Re-Liquefaction System Considering the Energy Efficiency Design Index for Liquid Hydrogen Carriers," Energies, MDPI, vol. 14(15), pages 1-23, July.
    12. Calili-Cankir, Fatma & Ismail, Mohammed S. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2023. "Air-breathing polymer electrolyte fuel cells: A review," Renewable Energy, Elsevier, vol. 213(C), pages 86-108.
    13. Qiu, Diankai & Zhou, Xiangyang & Chen, Minxue & Xu, Zhutian & Peng, Linfa, 2023. "Optimization of control strategy for air-cooled PEMFC based on in-situ observation of internal reaction state," Applied Energy, Elsevier, vol. 350(C).
    14. Daraei, Mahsa & Campana, Pietro Elia & Thorin, Eva, 2020. "Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants," Applied Energy, Elsevier, vol. 276(C).
    15. Saadat, Nazmus & Dhakal, Hom N. & Tjong, Jimi & Jaffer, Shaffiq & Yang, Weimin & Sain, Mohini, 2021. "Recent advances and future perspectives of carbon materials for fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
    17. Yin, Cong & Song, Yating & Liu, Meiru & Gao, Yan & Li, Kai & Qiao, Zemin & Tang, Hao, 2022. "Investigation of proton exchange membrane fuel cell stack with inversely phased wavy flow field design," Applied Energy, Elsevier, vol. 305(C).
    18. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    2. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.
    3. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    4. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    5. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    6. Zhu, Li & Chen, Junghui, 2018. "Prognostics of PEM fuel cells based on Gaussian process state space models," Energy, Elsevier, vol. 149(C), pages 63-73.
    7. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    8. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    9. Zhang, Chunfang & Wang, Liang & Bai, Xuchao & Huang, Jianan, 2022. "Bayesian reliability analysis for copula based step-stress partially accelerated dependent competing risks model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    10. Zhang, Di & Samsatli, Nouri J. & Hawkes, Adam D. & Brett, Dan J.L. & Shah, Nilay & Papageorgiou, Lazaros G., 2013. "Fair electricity transfer price and unit capacity selection for microgrids," Energy Economics, Elsevier, vol. 36(C), pages 581-593.
    11. Lyubov Slotyuk & Florian Part & Moritz-Caspar Schlegel & Floris Akkerman, 2024. "Life Cycle Assessment of the Domestic Micro Heat and Power Generation Proton Exchange Membrane Fuel Cell in Comparison with the Gas Condensing Boiler Plus Electricity from the Grid," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    12. Faria, Ricardo & Marques, Pedro & Moura, Pedro & Freire, Fausto & Delgado, Joaquim & de Almeida, Aníbal T., 2013. "Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 271-287.
    13. Go, Jaehyun & Byun, Jiwook & Orehounig, Kristina & Heo, Yeonsook, 2023. "Battery-H2 storage system for self-sufficiency in residential buildings under different electric heating system scenarios," Applied Energy, Elsevier, vol. 337(C).
    14. Tie Chen & Songlin Zheng & Jinzhi Feng, 2017. "Statistical dependency analysis of multiple competing failure causes of fuel cell engines," Journal of Risk and Reliability, , vol. 231(2), pages 83-90, April.
    15. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Chang, Ching-Chih & Huang, Po-Chien & Tu, Jhih-Sheng, 2019. "Life cycle assessment of yard tractors using hydrogen fuel at the Port of Kaohsiung, Taiwan," Energy, Elsevier, vol. 189(C).
    17. Bauer, Christian & Hofer, Johannes & Althaus, Hans-Jörg & Del Duce, Andrea & Simons, Andrew, 2015. "The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework," Applied Energy, Elsevier, vol. 157(C), pages 871-883.
    18. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    19. Sutharssan, Thamo & Montalvao, Diogo & Chen, Yong Kang & Wang, Wen-Chung & Pisac, Claudia & Elemara, Hakim, 2017. "A review on prognostics and health monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 440-450.
    20. Nam, Le Vu & Choi, Eunho & Jang, Segeun & Kim, Sang Moon, 2021. "Patterned mesoporous TiO2 microplates embedded in Nafion® membrane for high temperature/low relative humidity polymer electrolyte membrane fuel cell operation," Renewable Energy, Elsevier, vol. 180(C), pages 203-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:897-906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.