IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2348-d1355591.html
   My bibliography  Save this article

Life Cycle Assessment of the Domestic Micro Heat and Power Generation Proton Exchange Membrane Fuel Cell in Comparison with the Gas Condensing Boiler Plus Electricity from the Grid

Author

Listed:
  • Lyubov Slotyuk

    (Fachbereich Ökodesign und Energieverbrauchskennzeichnung, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 82, 12203 Berlin, Germany)

  • Florian Part

    (Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria)

  • Moritz-Caspar Schlegel

    (Fachbereich Ökodesign und Energieverbrauchskennzeichnung, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 82, 12203 Berlin, Germany)

  • Floris Akkerman

    (Fachbereich Ökodesign und Energieverbrauchskennzeichnung, Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 82, 12203 Berlin, Germany)

Abstract

The energy demand of private households contributes globally to 36.5% of the total CO 2 emissions. To analyze the emissions reduction potential, we conducted a comparative life cycle assessment of a proton exchange membrane fuel cell in a residential application and a conventional system with a stand-alone gas condensing boiler and electricity from a grid mix. The period under review was referred to as the service life of the PEMFC and is assumed to be 10 years (83,038 h of PEMFC). The applicability of this in a single-family house built between 1991 and 2000 under German climatic conditions was investigated. The functional unit is set to the thermal energy demand of 16,244 kWh/a and electricity demand of 4919 kWh/a of a single-family house. The impact assessment method “CML 2001–August 2016” was used in this investigation. The manufacturing phase of the proton exchange membrane fuel cell showed disadvantages, whereby the use phase had significant advantages in most of the environmental impact categories as compared to the conventional energy supply system. Considering the whole life cycle, the advantages from the use phase could outperform the disadvantages from the manufacturing phase in most of the impact categories, except for ADP elements and TETP.

Suggested Citation

  • Lyubov Slotyuk & Florian Part & Moritz-Caspar Schlegel & Floris Akkerman, 2024. "Life Cycle Assessment of the Domestic Micro Heat and Power Generation Proton Exchange Membrane Fuel Cell in Comparison with the Gas Condensing Boiler Plus Electricity from the Grid," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2348-:d:1355591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
    2. Song Yan & Mingyang Yang & Chuanyu Sun & Sichuan Xu, 2023. "Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method," Energies, MDPI, vol. 16(16), pages 1-18, August.
    3. Chwieduk, Dorota, 2003. "Towards sustainable-energy buildings," Applied Energy, Elsevier, vol. 76(1-3), pages 211-217, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Optimization design of BCHP system to maximize to save energy and reduce environmental impact," Energy, Elsevier, vol. 35(8), pages 3388-3398.
    2. Sanjeeta N. Ghimire & Garrett Dave Hunter, 2020. "Energy Consumption, Window Size, and Environment-Friendly Building Design: Analysis Using Scale Model Houses," Journal of Development Innovations, KarmaQuest International, vol. 4(1), pages 64-79, July.
    3. Nicolas Muck & Christoph David, 2023. "Integrating Fiber Sensing for Spatially Resolved Temperature Measurement in Fuel Cells," Energies, MDPI, vol. 17(1), pages 1-17, December.
    4. Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.
    5. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    6. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    7. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    8. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    9. Teng Teng & Xin Zhang & Qicheng Xue & Baodi Zhang, 2024. "Research of Proton Exchange Membrane Fuel Cell Modeling on Concentration Polarization under Variable-Temperature Operating Conditions," Energies, MDPI, vol. 17(3), pages 1-17, February.
    10. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    11. Stitou, Driss & Mazet, Nathalie & Mauran, Sylvain, 2012. "Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning," Energy, Elsevier, vol. 41(1), pages 261-270.
    12. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    13. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    14. Massimo Sicilia & Davide Cervone & Pierpaolo Polverino & Cesare Pianese, 2024. "Advancements on Lumped Modelling of Membrane Water Content for Real-Time Prognostics and Control of PEMFC," Energies, MDPI, vol. 17(19), pages 1-20, September.
    15. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    16. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    17. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
    18. Roman Niestrój & Tomasz Rogala & Wojciech Skarka, 2020. "An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack," Energies, MDPI, vol. 13(13), pages 1-31, July.
    19. Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.
    20. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2348-:d:1355591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.