IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i2p1154-1165d45429.html
   My bibliography  Save this article

Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method

Author

Listed:
  • Cherng-Yuan Lin

    (Department of Marine Engineering, National Taiwan Ocean University, Keelung 202, Taiwan)

  • Bo-Yu Lin

    (Department of Marine Engineering, National Taiwan Ocean University, Keelung 202, Taiwan)

Abstract

Lipids were extracted from Isochrysis galbana using a microwave-assisted method accompanied by various types of organic solvents. The effects of organic solvent type and microwave input energy on the fatty acid characteristics of the extracted lipids and their biodiesel product were investigated. Variations in the characteristics of the lipids extracted using a combination of n -hexane and iso -propanol solvents in both emulsion and direct mixtures were also compared. The experimental results showed that greater quantities of Isochrysis galbana lipids, and fatty acid methyl esters transesterified from those lipids, were extracted when using microwave irradiation with an organic solvent mixture of n -hexane and isopropanol in a 2:1 volumetric ratio than when using either n -hexane or isopropanol as the sole solvent. A greater quantity of Isochrysis galbana lipids was extracted when an emulsion of isopropanol solvent evenly dispersed in the continuous phase of n -hexane solvent was used than when a direct mixture of the two solvents was used. In addition, the quantity of lipids extracted from the dried Isochrysis galbana powder with the assistance of microwave irradiation was 9.08 wt% greater than when using traditional Soxhlet extraction without microwave irradiation.

Suggested Citation

  • Cherng-Yuan Lin & Bo-Yu Lin, 2015. "Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method," Energies, MDPI, vol. 8(2), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:1154-1165:d:45429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/2/1154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/2/1154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    2. Yang, Cheng-Yuan & Fang, Zhen & Li, Bo & Long, Yun-feng, 2012. "Review and prospects of Jatropha biodiesel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2178-2190.
    3. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    2. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    3. Kulvinder Bajwa & Narsi R Bishnoi & Anita Kirrolia, 2018. "Evaluation of Nutrient Stress (Nitrogen, Phosphorus Regimes) on Physio-Biochemical Parameters of Oleaginous Micro algal Strains and SEM Study under Nutrient Stress," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 10(1), pages 01-07, April.
    4. Sigita Vaičiulytė & Giulia Padovani & Jolanta Kostkevičienė & Pietro Carlozzi, 2014. "Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity," Energies, MDPI, vol. 7(6), pages 1-18, June.
    5. Joseph Antony Sundarsingh Tensingh & Vijayalakshmi Shankar, 2022. "Sustainable Production of Biodiesel Using UV Mutagenesis as a Strategy to Enhance the Lipid Productivity in R. mucilaginosa," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    6. Ankita Juneja & Ruben Michael Ceballos & Ganti S. Murthy, 2013. "Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review," Energies, MDPI, vol. 6(9), pages 1-32, September.
    7. Fazal, Tahir & Mushtaq, Azeem & Rehman, Fahad & Ullah Khan, Asad & Rashid, Naim & Farooq, Wasif & Rehman, Muhammad Saif Ur & Xu, Jian, 2018. "Bioremediation of textile wastewater and successive biodiesel production using microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3107-3126.
    8. Senem Onen Cinar & Zhi Kai Chong & Mehmet Ali Kucuker & Nils Wieczorek & Ugur Cengiz & Kerstin Kuchta, 2020. "Bioplastic Production from Microalgae: A Review," IJERPH, MDPI, vol. 17(11), pages 1-21, May.
    9. Marianela Cobos & Jae D. Paredes & J. Dylan Maddox & Gabriel Vargas-Arana & Leenin Flores & Carla P. Aguilar & Jorge L. Marapara & Juan C. Castro, 2017. "Isolation and Characterization of Native Microalgae from the Peruvian Amazon with Potential for Biodiesel Production," Energies, MDPI, vol. 10(2), pages 1-16, February.
    10. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    11. Santhakumaran, Prasanthkumar & Kookal, Santhosh Kumar & Mathew, Linu & Ray, Joseph George, 2020. "Experimental evaluation of the culture parameters for optimum yield of lipids and other nutraceutically valuable compounds in Chloroidium saccharophillum (Kruger) comb. Nov," Renewable Energy, Elsevier, vol. 147(P1), pages 1082-1097.
    12. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Swathi Somaiyan Babu & Rashmi Gondi & Godvin Sharmila Vincent & Godwin Christopher JohnSamuel & Rajesh Banu Jeyakumar, 2022. "Microalgae Biomass and Lipids as Feedstock for Biofuels: Sustainable Biotechnology Strategies," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    14. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    15. Shuai Zhang & Yuyong Hou & Zhiyong Liu & Xiang Ji & Di Wu & Weijie Wang & Dongyuan Zhang & Wenya Wang & Shulin Chen & Fangjian Chen, 2020. "Electro-Fenton Based Technique to Enhance Cell Harvest and Lipid Extraction from Microalgae," Energies, MDPI, vol. 13(15), pages 1-14, July.
    16. De Bhowmick, Goldy & Koduru, Lokanand & Sen, Ramkrishna, 2015. "Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1239-1253.
    17. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    18. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    19. Peralta-Ruiz, Y. & González-Delgado, A.-D. & Kafarov, V., 2013. "Evaluation of alternatives for microalgae oil extraction based on exergy analysis," Applied Energy, Elsevier, vol. 101(C), pages 226-236.
    20. Terigar, Beatrice G. & Theegala, Chandra S., 2014. "Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures," Renewable Energy, Elsevier, vol. 64(C), pages 238-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:1154-1165:d:45429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.