IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp368-381.html
   My bibliography  Save this article

Biochemical and genetic changes revealing the enhanced lipid accumulation in Desmodesmus sp. mutated by atmospheric and room temperature plasma

Author

Listed:
  • Li, Pengfei
  • Sun, Xin
  • Sun, Zhe
  • Huang, Feng
  • Wei, Wenqian
  • Liu, Xingshe
  • Liu, Yongjun
  • Deng, Linyu
  • Cheng, Zhiwen

Abstract

This research reveals biochemical and genetic changes for enhanced lipid production in Desmodesmus sp. mutated using atmospheric and room temperature plasma. Three lipid-rich mutant strains were selected by the special screening method, decided by the specific growth rate, relative fluorescence and the combination. There were no significant differences in genetic stability under 3-generation cultivation (p > 0.05). The highest lipid production and biomass increased by >100% and >15% compared to original strain, respectively. The activities of lipid enzymes, including acetyl-CoA carboxylase and diacylglycerol acyltransferases, responded to similar trends with lipid accumulation. Functional genes classification of mutant strains showed a great ratio in genetic information process (33.51%) and metabolism pathway (28.74%). More than 80% genes were not significant in lipid-related metabolisms and total 27 significant genes were analyzed, signifying similar genetic changes in mutant strains. Finally the establishing simplified diagram explained high lipid accumulation based on typical enzymes for fatty acid synthesis by upregulated genes, ACACA, fabF, fabG, ACSL, as well as triacylglycerol synthesis by upregulated genes, glpk, GPAT1_2, plsC, PDAT, dgat 1 and MGAT2. Lipid-rich strains performed a positive effect on lipid accumulation. These relative regulated genes and analysis might provide the control points for high lipid production in energy consumption.

Suggested Citation

  • Li, Pengfei & Sun, Xin & Sun, Zhe & Huang, Feng & Wei, Wenqian & Liu, Xingshe & Liu, Yongjun & Deng, Linyu & Cheng, Zhiwen, 2021. "Biochemical and genetic changes revealing the enhanced lipid accumulation in Desmodesmus sp. mutated by atmospheric and room temperature plasma," Renewable Energy, Elsevier, vol. 172(C), pages 368-381.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:368-381
    DOI: 10.1016/j.renene.2021.03.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Bhowmick, Goldy & Koduru, Lokanand & Sen, Ramkrishna, 2015. "Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1239-1253.
    2. Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
    3. Rohit, M.V. & Mohan, S. Venkata, 2016. "Tropho-metabolic transition during Chlorella sp. cultivation on synthesis of biodiesel," Renewable Energy, Elsevier, vol. 98(C), pages 84-91.
    4. Modiri, Sima & Zahiri, Hossein Shahbani & Vali, Hojatollah & Noghabi, Kambiz Akbari, 2018. "Evaluation of transcription profile of acetyl-CoA carboxylase (ACCase) and acyl-ACP synthetase (AAS) to reveal their roles in induced lipid accumulation of Synechococcus sp. HS01," Renewable Energy, Elsevier, vol. 129(PA), pages 347-356.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Han & Wu, Tao & Chen, Stephenie Hiu Yuet & Ren, Yuanyuan & Yang, Shufang & Huang, Junchao & Mou, Haijin & Chen, Feng, 2021. "Powerful tools for productivity improvements in microalgal production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behera, Bunushree & Unpaprom, Yuwalee & Ramaraj, Rameshprabu & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj & Paramasivan, Balasubramanian, 2021. "Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Abdullah, Bawadi & Syed Muhammad, Syed Anuar Faua’ad & Shokravi, Zahra & Ismail, Shahrul & Kassim, Khairul Anuar & Mahmood, Azmi Nik & Aziz, Md Maniruzzaman A., 2019. "Fourth generation biofuel: A review on risks and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 37-50.
    3. Zahra Shokravi & Hoofar Shokravi & Ong Hwai Chyuan & Woei Jye Lau & Seyed Saeid Rahimian Koloor & Michal Petrů & Ahmad Fauzi Ismail, 2020. "Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review," Sustainability, MDPI, vol. 12(21), pages 1-28, October.
    4. Kumar, Ravi Ranjan & Sarkar, Debasis & Sen, Ramkrishna, 2024. "Simultaneously maximizing microalgal biomass and lipid productivities by machine learning driven modeling, global sensitivity analysis and multi-objective optimization for sustainable biodiesel produc," Applied Energy, Elsevier, vol. 358(C).
    5. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    6. Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
    7. Thao Nguyen Luu & Zouheir Alsafra & Amélie Corato & Daniele Corsaro & Hung Anh Le & Gauthier Eppe & Claire Remacle, 2020. "Isolation and Characterization of Two Microalgal Isolates from Vietnam with Potential for Food, Feed, and Biodiesel Production," Energies, MDPI, vol. 13(4), pages 1-16, February.
    8. Nugroho Adi Sasongko & Ryozo Noguchi & Junko Ito & Mikihide Demura & Sosaku Ichikawa & Mitsutoshi Nakajima & Makoto M. Watanabe, 2018. "Engineering Study of a Pilot Scale Process Plant for Microalgae-Oil Production Utilizing Municipal Wastewater and Flue Gases: Fukushima Pilot Plant," Energies, MDPI, vol. 11(7), pages 1-24, June.
    9. Chang, Wenjuan & Li, Yanpeng & Qu, Yanhui & Liu, Yi & Zhang, Gaoshan & Zhao, Yan & Liu, Siyu, 2022. "Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA," Renewable Energy, Elsevier, vol. 187(C), pages 819-828.
    10. Chung, Young-Soo & Lee, Jin-Woo & Chung, Chung-Han, 2017. "Molecular challenges in microalgae towards cost-effective production of quality biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 139-144.
    11. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    12. Vieira, Bruno & Nadaleti, Willian Cézar & Sarto, Ewerson, 2021. "The effect of the addition of castor oil to residual soybean oil to obtain biodiesel in Brazil: Energy matrix diversification," Renewable Energy, Elsevier, vol. 165(P1), pages 657-667.
    13. Narayanan, Mathiyazhagan, 2024. "Promising biorefinery products from marine macro and microalgal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    14. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Dahai, He & Zhihong, Yin & Lin, Qin & Yuhong, Li & Lei, Tian & Jiang, Li & Liandong, Zhu, 2024. "The application of magical microalgae in carbon sequestration and emission reduction: Removal mechanisms and potential analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    16. Bahare Salehi & Lijun Wang, 2022. "Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater," Energies, MDPI, vol. 15(15), pages 1-21, July.
    17. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Abomohra, Abd El-Fatah & Jin, Wenbiao & Tu, Renjie & Han, Song-Fang & Eid, Mohammed & Eladel, Hamed, 2016. "Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 596-606.
    19. Chakraborty, Sourabh & Dunford, Nurhan Turgut & Goad, Carla, 2021. "A kinetic study of microalgae, municipal sludge and cedar wood co-pyrolysis," Renewable Energy, Elsevier, vol. 165(P1), pages 514-524.
    20. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:368-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.