IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v35y2014icp318-335.html
   My bibliography  Save this article

Solar sorption refrigeration in Africa

Author

Listed:
  • N’Tsoukpoe, Kokouvi Edem
  • Yamegueu, Daniel
  • Bassole, Justin

Abstract

Solar sorption refrigeration technologies are regarded as a promising way to meet the growing refrigeration needs in Africa, for thermal comfort, foods and crops, vaccines and medicines conservation. Sorption technologies projects and studies have been reported in Africa since the late 1970s. This paper describes the most representative reported research activities and projects in various African climatic conditions. An emphasis is put on demonstrative plants involving absorption, adsorption or desiccant cooling applications. From this overview, it appears that a lot of achievements have been made, though applications are mainly focused on small-size cold boxes for foods and vaccines preservation; no direct building air conditioning based on adsorption or absorption has been reported. Mediterranean countries seems to offer the best weather conditions for solar sorption refrigeration applications and plenty of related activities could be identified in these countries. A more adequate design for each of other climatic zones in Africa may then be relevant. As anywhere, the high cost of these technologies remains the main the biggest brake to their diffusion in Africa.

Suggested Citation

  • N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
  • Handle: RePEc:eee:rensus:v:35:y:2014:i:c:p:318-335
    DOI: 10.1016/j.rser.2014.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114002573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alosaimy, A.S. & Hamed, Ahmed M., 2011. "Theoretical and experimental investigation on the application of solar water heater coupled with air humidifier for regeneration of liquid desiccant," Energy, Elsevier, vol. 36(7), pages 3992-4001.
    2. Hassan, A.A.M. & Hassan, M. Salah, 2008. "Dehumidification of air with a newly suggested liquid desiccant," Renewable Energy, Elsevier, vol. 33(9), pages 1989-1997.
    3. Zhai, X.Q. & Wang, R.Z., 2009. "A review for absorbtion and adsorbtion solar cooling systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1523-1531, August.
    4. Ogueke, N.V. & Anyanwu, E.E., 2008. "Design improvements for a collector/generator/adsorber of a solid adsorption solar refrigerator," Renewable Energy, Elsevier, vol. 33(11), pages 2428-2440.
    5. Meunier, F., 1994. "Sorption solar cooling," Renewable Energy, Elsevier, vol. 5(1), pages 422-429.
    6. Hamed, Ahmed M., 2002. "Theoretical and experimental study on the transient adsorption characteristics of a vertical packed porous bed," Renewable Energy, Elsevier, vol. 27(4), pages 525-541.
    7. Boubakri, A., 2006. "Performance of an adsorptive solar ice maker operating with a single double function heat exchanger (evaporator/condenser)," Renewable Energy, Elsevier, vol. 31(11), pages 1799-1812.
    8. Lemmini, Fatiha & Errougani, Abdelmoussehel, 2007. "Experimentation of a solar adsorption refrigerator in Morocco," Renewable Energy, Elsevier, vol. 32(15), pages 2629-2641.
    9. Boubakri, A. & Arsalane, M. & Yous, B. & Ali-Moussa, L. & Pons, M. & Meunier, F. & Guilleminot, J.J., 1992. "Experimental study of adsorptive solar-powered ice makers in Agadir (Morocco)—2. Influences of meteorological parameters," Renewable Energy, Elsevier, vol. 2(1), pages 15-21.
    10. Boubakri, A. & Arsalane, M. & Yous, B. & Ali-Moussa, L. & Pons, M. & Meunier, F. & Guilleminot, J.J., 1992. "Experimental study of adsorptive solar-powered ice makers in Agadir (Morocco)—1. Performance in actual site," Renewable Energy, Elsevier, vol. 2(1), pages 7-13.
    11. Thoruwa, T.F.N. & Smith, J.E. & Grant, A.D. & Johnstone, C.M., 1996. "Developments in solar drying using forced ventilation and solar regenerated desiccant materials," Renewable Energy, Elsevier, vol. 9(1), pages 686-689.
    12. Boubakri, A, 2003. "A new conception of an adsorptive solar-powered ice maker," Renewable Energy, Elsevier, vol. 28(5), pages 831-842.
    13. Elsafty, A & Al-Daini, A.J, 2002. "Economical comparison between a solar-powered vapour absorption air-conditioning system and a vapour compression system in the Middle East," Renewable Energy, Elsevier, vol. 25(4), pages 569-583.
    14. La, D. & Dai, Y.J. & Li, Y. & Wang, R.Z. & Ge, T.S., 2010. "Technical development of rotary desiccant dehumidification and air conditioning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 130-147, January.
    15. Lemmini, F. & Errougani, A., 2005. "Building and experimentation of a solar powered adsorption refrigerator," Renewable Energy, Elsevier, vol. 30(13), pages 1989-2003.
    16. Enibe, S.O., 1997. "Solar refrigeration for rural applications," Renewable Energy, Elsevier, vol. 12(2), pages 157-167.
    17. Thoruwa, T.F.N & Johnstone, C.M & Grant, A.D & Smith, J.E, 2000. "Novel, low cost CaCl2 based desiccants for solar crop drying applications," Renewable Energy, Elsevier, vol. 19(4), pages 513-520.
    18. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    19. Hamed, Ahmed M., 2003. "Desorption characteristics of desiccant bed for solar dehumidification/humidification air conditioning systems," Renewable Energy, Elsevier, vol. 28(13), pages 2099-2111.
    20. Anyanwu, E.E. & Ogueke, N.V., 2005. "Thermodynamic design procedure for solid adsorption solar refrigerator," Renewable Energy, Elsevier, vol. 30(1), pages 81-96.
    21. Bassuoni, M.M., 2011. "An experimental study of structured packing dehumidifier/regenerator operating with liquid desiccant," Energy, Elsevier, vol. 36(5), pages 2628-2638.
    22. Enibe, S.O & Iloeje, O.C, 2000. "Heat and mass transfer in porous spherical pellets of CaCl2 for solar refrigeration," Renewable Energy, Elsevier, vol. 20(3), pages 305-324.
    23. Hamed, Ahmed M, 2000. "Absorption–regeneration cycle for production of water from air-theoretical approach," Renewable Energy, Elsevier, vol. 19(4), pages 625-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkaitz Usubiaga‐Liaño & Paul Behrens & Vassilis Daioglou, 2020. "Energy use in the global food system," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 830-840, August.
    2. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    3. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    4. Claudio Del Pero & Federico M. Butera & Luigi Piegari & Marco Faifer & Maddalena Buffoli & Paolo Monzani, 2016. "Characterization and Monitoring of a Self-Constructible Photovoltaic-Based Refrigerator," Energies, MDPI, vol. 9(9), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    2. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    3. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    4. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
    5. Afshar, O. & Saidur, R. & Hasanuzzaman, M. & Jameel, M., 2012. "A review of thermodynamics and heat transfer in solar refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5639-5648.
    6. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K. & Sur, Anirban, 2017. "An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 364-376.
    7. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    8. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    9. Hassan, H.Z. & Mohamad, A.A., 2013. "Thermodynamic analysis and theoretical study of a continuous operation solar-powered adsorption refrigeration system," Energy, Elsevier, vol. 61(C), pages 167-178.
    10. Boubakri, A., 2006. "Performance of an adsorptive solar ice maker operating with a single double function heat exchanger (evaporator/condenser)," Renewable Energy, Elsevier, vol. 31(11), pages 1799-1812.
    11. Louajari, Mohamed & Mimet, Abdelaziz & Ouammi, Ahmed, 2011. "Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon-ammonia pair," Applied Energy, Elsevier, vol. 88(3), pages 690-698, March.
    12. Hassan Zohair Hassan, 2014. "Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair," Energies, MDPI, vol. 7(10), pages 1-19, October.
    13. Korhammer, Kathrin & Neumann, Karsten & Opel, Oliver & Ruck, Wolfgang K.L., 2018. "Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC," Applied Energy, Elsevier, vol. 230(C), pages 1255-1278.
    14. Ramzy, Ahmed K. & Kadoli, Ravikiran & T.P., Ashok Babu, 2013. "Experimental and theoretical investigations on the cyclic operation of TSA cycle for air dehumidification using packed beds of silica gel particles," Energy, Elsevier, vol. 56(C), pages 8-24.
    15. Alghoul, M.A. & Sulaiman, M.Y. & Sopian, K. & Azmi, B.Z., 2009. "Performance of a dual-purpose solar continuous adsorption system," Renewable Energy, Elsevier, vol. 34(3), pages 920-927.
    16. Sultan, Muhammad & El-Sharkawy, Ibrahim I. & Miyazaki, Takahiko & Saha, Bidyut Baran & Koyama, Shigeru, 2015. "An overview of solid desiccant dehumidification and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 16-29.
    17. Misha, S. & Mat, S. & Ruslan, M.H. & Sopian, K., 2012. "Review of solid/liquid desiccant in the drying applications and its regeneration methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4686-4707.
    18. Wang, S.G. & Wang, R.Z., 2005. "Recent developments of refrigeration technology in fishing vessels," Renewable Energy, Elsevier, vol. 30(4), pages 589-600.
    19. Wang, L. & Chen, L. & Wang, H.L. & Liao, D.L., 2009. "The adsorption refrigeration characteristics of alkaline-earth metal chlorides and its composite adsorbents," Renewable Energy, Elsevier, vol. 34(4), pages 1016-1023.
    20. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:35:y:2014:i:c:p:318-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.