IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v38y2014icp651-655.html
   My bibliography  Save this article

Biodiesel produced from crambe oil in Brazil—A study of performance and emissions in a diesel cycle engine generator

Author

Listed:
  • Rosa, Helton Aparecido
  • Wazilewski, Willian Tenfen
  • Secco, Deonir
  • Chaves, Luiz Inácio
  • Veloso, Gustavo
  • de Souza, Samuel Nelson Melegari
  • da Silva, Marcelo José
  • Santos, Reginaldo Ferreira

Abstract

The ceaseless search for renewable sources of energy puts biodiesel as a great alternative to replace oil-based fuels. This work aimed to assess the specific consumption of fuel, thermal efficiency and emission of exhaust gases when crambe biodiesel and diesel oil are used in a diesel-cycle internal combustion engine-generator, with different levels of resistive loads. A diesel-cycle engine generator was used, with 7.36kW (10cv) of power and 5.5kVA/5.0kW of nominal power, with monophasic output tension of 120/240V. The used fuels were crambe biodiesel (B100) and diesel oil (B0). Nominal resistive loads applied ranged between 1.0kW and 5.0kW. In order to quantify the emission of gases, fuel quality and emission analyzer were used. Crambe biodiesel׳s data for specific consumption and efficiency of energetic conversion proved to be statistically equal to those of diesel. With the usage of crambe biodiesel there was a significant reduction in the analyzed exhausted gases.

Suggested Citation

  • Rosa, Helton Aparecido & Wazilewski, Willian Tenfen & Secco, Deonir & Chaves, Luiz Inácio & Veloso, Gustavo & de Souza, Samuel Nelson Melegari & da Silva, Marcelo José & Santos, Reginaldo Ferreira, 2014. "Biodiesel produced from crambe oil in Brazil—A study of performance and emissions in a diesel cycle engine generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 651-655.
  • Handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:651-655
    DOI: 10.1016/j.rser.2014.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114004651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makareviciene, V & Janulis, P, 2003. "Environmental effect of rapeseed oil ethyl ester," Renewable Energy, Elsevier, vol. 28(15), pages 2395-2403.
    2. Pereira, Roberto G. & Oliveira, Cesar D. & Oliveira, Jorge L. & Oliveira, Paulo Cesar P. & Fellows, Carlos E. & Piamba, Oscar E., 2007. "Exhaust emissions and electric energy generation in a stationary engine using blends of diesel and soybean biodiesel," Renewable Energy, Elsevier, vol. 32(14), pages 2453-2460.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gomes Souza, Mateus Cristian & Firmino de Oliveira, Marcelo & Vieira, Andressa Tironi & Marcio de Faria, Anízio & Ferreira Batista, Antônio Carlos, 2021. "Methylic and ethylic biodiesel production from crambe oil (Crambe abyssinica): New aspects for yield and oxidative stability," Renewable Energy, Elsevier, vol. 163(C), pages 368-374.
    2. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.
    3. Diego Perrone & Angelo Algieri & Pietropaolo Morrone & Teresa Castiglione, 2021. "Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration," Energies, MDPI, vol. 14(2), pages 1-28, January.
    4. D´Agosto, Márcio de Almeida & Vieira da Silva, Marcelino Aurélio & de Oliveira, Cíntia Machado & Franca, Luíza Santana & da Costa Marques, Luiz Guilherme & Soares Murta, Aurélio Lamare & de Freitas, M, 2015. "Evaluating the potential of the use of biodiesel for power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 807-817.
    5. de Marins, Araceli Ciotti & Reichert, José Miguel & Secco, Deonir & Rosa, Helton Aparecido & Veloso, Gustavo, 2018. "Crambe grain yield and oil content affected by spatial variability in soil physical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 464-472.
    6. Bassegio, Doglas & Zanotto, Maurício Dutra & Santos, Reginaldo Ferreira & Werncke, Ivan & Dias, Patrícia Pereira & Olivo, Mateus, 2016. "Oilseed crop crambe as a source of renewable energy in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 311-321.
    7. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayin, Cenk, 2019. "The best fuel selection with hybrid multiple-criteria decision making approaches in a CI engine fueled with their blends and pure biodiesels produced from different sources," Renewable Energy, Elsevier, vol. 134(C), pages 653-668.
    9. Amin Nedayali & Alireza Shirneshan, 2016. "Experimental Study of the Effects of Biodiesel on the Performance of a Diesel Power Generator," Energy & Environment, , vol. 27(5), pages 553-565, August.
    10. Rigotte, Marcio Roberto & Secco, Deonir & Rosa, Helton Aparecido & de Souza, Samuel Nelson Melegari & Santos, Reginaldo Ferreira & Gurgacz, Flávio & da Silva, Tiago Roque Benetoli, 2017. "Energy efficiency of engine-generator set using biofuels under varied loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 520-524.
    11. Willian Yuki Watanabe de Lima Mera & Ismael de Jesus Matos Viégas & Jessivaldo Rodrigues Galvão & Tiago Kesajiro Moraes Yakuwa & Alasse Oliveira da Silva & Dioclea Almeida Seabra Silva & Ricardo Shi, 2020. "Effects of Liming on the Growth and Nutritional Status of Crambe (Crambe abyssinica Hochst)," Journal of Agricultural Studies, Macrothink Institute, vol. 8(2), pages 590-603, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    2. D´Agosto, Márcio de Almeida & da Silva, Marcelino Aurélio Vieira & Franca, Luíza Santana & de Oliveira, Cíntia Machado & Alexandre, Manuel Oliveira Lemos & da Costa Marques, Luiz Guilherme & Murta, Au, 2017. "Comparative study of emissions from stationary engines using biodiesel made from soybean oil, palm oil and waste frying oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1376-1392.
    3. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    4. Saddam H. Al-lwayzy & Talal Yusaf, 2013. "Chlorella protothecoides Microalgae as an Alternative Fuel for Tractor Diesel Engines," Energies, MDPI, vol. 6(2), pages 1-18, February.
    5. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    6. Gómez, Maria F. & Silveira, Semida, 2015. "The last mile in the Brazilian Amazon – A potential pathway for universal electricity access," Energy Policy, Elsevier, vol. 82(C), pages 23-37.
    7. Seraç, Mehmet Reşit & Aydın, Selman & Yılmaz, Adem & Şevik, Seyfi, 2020. "Evaluation of comparative combustion, performance, and emission of soybean-based alternative biodiesel fuel blends in a CI engine," Renewable Energy, Elsevier, vol. 148(C), pages 1065-1073.
    8. Reijnders, L., 2006. "Conditions for the sustainability of biomass based fuel use," Energy Policy, Elsevier, vol. 34(7), pages 863-876, May.
    9. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    10. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    11. Lin, Yung-Sung & Lin, Hai-Ping, 2010. "Study on the spray characteristics of methyl esters from waste cooking oil at elevated temperature," Renewable Energy, Elsevier, vol. 35(9), pages 1900-1907.
    12. Sendzikiene, E. & Makareviciene, V. & Janulis, P., 2006. "Influence of fuel oxygen content on diesel engine exhaust emissions," Renewable Energy, Elsevier, vol. 31(15), pages 2505-2512.
    13. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2019. "Characterization of biodiesel production (ultrasonic-assisted) from evening-primroses (Oenothera lamarckiana) as novel feedstock and its effect on CI engine parameters," Renewable Energy, Elsevier, vol. 130(C), pages 50-60.
    14. George Anastopoulos & Ypatia Zannikou & Stamoulis Stournas & Stamatis Kalligeros, 2009. "Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters," Energies, MDPI, vol. 2(2), pages 1-15, June.
    15. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    16. Ngee S. Chong & Ifeanyi Nwobodo & Madison Strait & Dakota Cook & Saidi Abdulramoni & Beng G. Ooi, 2023. "Preparation and Characterization of Shell-Based CaO Catalysts for Ultrasonication-Assisted Production of Biodiesel to Reduce Toxicants in Diesel Generator Emissions," Energies, MDPI, vol. 16(14), pages 1-20, July.
    17. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    18. Gómez, M.F. & Téllez, A. & Silveira, S., 2015. "Exploring the effect of subsidies on small-scale renewable energy solutions in the Brazilian Amazon," Renewable Energy, Elsevier, vol. 83(C), pages 1200-1214.
    19. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    20. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:651-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.