IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v31y2006i15p2505-2512.html
   My bibliography  Save this article

Influence of fuel oxygen content on diesel engine exhaust emissions

Author

Listed:
  • Sendzikiene, E.
  • Makareviciene, V.
  • Janulis, P.

Abstract

The aim of this work was to investigate: the intersolubility of mixtures of rapeseed oil methyl esters, diesel fuel and ethanol; to determine the dependence of solubility upon temperature and finally to evaluate emissions of exhaust gases of these stable fuel mixtures.

Suggested Citation

  • Sendzikiene, E. & Makareviciene, V. & Janulis, P., 2006. "Influence of fuel oxygen content on diesel engine exhaust emissions," Renewable Energy, Elsevier, vol. 31(15), pages 2505-2512.
  • Handle: RePEc:eee:renene:v:31:y:2006:i:15:p:2505-2512
    DOI: 10.1016/j.renene.2005.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810500354X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makareviciene, V & Janulis, P, 2003. "Environmental effect of rapeseed oil ethyl ester," Renewable Energy, Elsevier, vol. 28(15), pages 2395-2403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raslavičius, Laurencas & Bazaras, Žilvinas, 2010. "Ecological assessment and economic feasibility to utilize first generation biofuels in cogeneration output cycle – The case of Lithuania," Energy, Elsevier, vol. 35(9), pages 3666-3673.
    2. Zefei Tan & Jun Wang & Wengang Chen & Lizhong Shen & Yuhua Bi, 2021. "Study on the Influence of EGR on the Combustion Performance of Biofuel Diesel at Different Ambient Simulated Pressures," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    3. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    4. Sidibé, S.S. & Blin, J. & Vaitilingom, G. & Azoumah, Y., 2010. "Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2748-2759, December.
    5. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    6. Palash, S.M. & Kalam, M.A. & Masjuki, H.H. & Masum, B.M. & Rizwanul Fattah, I.M. & Mofijur, M., 2013. "Impacts of biodiesel combustion on NOx emissions and their reduction approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 473-490.
    7. Raslavičius, Laurencas & Keršys, Artūras & Starevičius, Martynas & Sapragonas, Jonas & Bazaras, Žilvinas, 2014. "Biofuels, sustainability and the transport sector in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 328-346.
    8. Feng, Renhua & Fu, Jianqin & Yang, Jing & Wang, Yi & Li, Yangtao & Deng, Banglin & Liu, Jingping & Zhang, Daming, 2015. "Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend," Renewable Energy, Elsevier, vol. 81(C), pages 113-122.
    9. Karabektas, Murat & Hosoz, Murat, 2009. "Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends," Renewable Energy, Elsevier, vol. 34(6), pages 1554-1559.
    10. Chen, Yi-Hung & Chen, Jhih-Hong & Luo, Yu-Min, 2012. "Complementary biodiesel combination from tung and medium-chain fatty acid oils," Renewable Energy, Elsevier, vol. 44(C), pages 305-310.
    11. Basha, Syed Ameer & Gopal, K. Raja & Jebaraj, S., 2009. "A review on biodiesel production, combustion, emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1628-1634, August.
    12. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Anastopoulos & Ypatia Zannikou & Stamoulis Stournas & Stamatis Kalligeros, 2009. "Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters," Energies, MDPI, vol. 2(2), pages 1-15, June.
    2. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    3. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    4. Rosa, Helton Aparecido & Wazilewski, Willian Tenfen & Secco, Deonir & Chaves, Luiz Inácio & Veloso, Gustavo & de Souza, Samuel Nelson Melegari & da Silva, Marcelo José & Santos, Reginaldo Ferreira, 2014. "Biodiesel produced from crambe oil in Brazil—A study of performance and emissions in a diesel cycle engine generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 651-655.
    5. Tira, H.S. & Herreros, J.M. & Tsolakis, A. & Wyszynski, M.L., 2012. "Characteristics of LPG-diesel dual fuelled engine operated with rapeseed methyl ester and gas-to-liquid diesel fuels," Energy, Elsevier, vol. 47(1), pages 620-629.
    6. Reijnders, L., 2006. "Conditions for the sustainability of biomass based fuel use," Energy Policy, Elsevier, vol. 34(7), pages 863-876, May.
    7. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    8. Lawan, Ibrahim & Zhou, Weiming & Garba, Zaharaddeen Nasiru & Zhang, Mingxin & Yuan, Zhanhui & Chen, Lihui, 2019. "Critical insights into the effects of bio-based additives on biodiesels properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 83-95.
    9. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    10. D´Agosto, Márcio de Almeida & da Silva, Marcelino Aurélio Vieira & Franca, Luíza Santana & de Oliveira, Cíntia Machado & Alexandre, Manuel Oliveira Lemos & da Costa Marques, Luiz Guilherme & Murta, Au, 2017. "Comparative study of emissions from stationary engines using biodiesel made from soybean oil, palm oil and waste frying oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1376-1392.
    11. Raslavičius, Laurencas & Keršys, Artūras & Starevičius, Martynas & Sapragonas, Jonas & Bazaras, Žilvinas, 2014. "Biofuels, sustainability and the transport sector in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 328-346.
    12. Vigneshwar, V. & Krishnan, S. Yogesh & Kishna, R. Susanth & Srinath, R. & Ashok, B. & Nanthagopal, K., 2019. "Comprehensive review of Calophyllum inophyllum as a feasible alternate energy for CI engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Yadav, Prem Shanker & Said, Zafar & Gautam, Raghvendra & Raman, Roshan & Caliskan, Hakan, 2023. "Novel investigation on atomization, performance, and emission characteristics of preheated jatropha oil methyl ester and ethyl ester," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:31:y:2006:i:15:p:2505-2512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.