IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip1p464-472.html
   My bibliography  Save this article

Crambe grain yield and oil content affected by spatial variability in soil physical properties

Author

Listed:
  • de Marins, Araceli Ciotti
  • Reichert, José Miguel
  • Secco, Deonir
  • Rosa, Helton Aparecido
  • Veloso, Gustavo

Abstract

Crambe (Crambe abyssinica Hochst) is a Brassicaceae crop with high potential for biofuel production without conflict with food industry and with similar energy performance to fossil fuels, but there is almost no information on soil conditions affecting crop grain and oil production. We studied the spatial correlation between soil porous space, soil resistance to penetration, and bulk density of a clayey Oxisol (Ferralsol) with crambe grain yield and oil content. Four states of compaction were generated by using a roller compactor, in a 1-ha field, and 133 georeferenced sampling points were selected. In two consecutive years, these positions were used for soil physical characterization, and crambe harvesting for grain yield and oil content determinations. Soil resistance to penetration, bulk density, and pore space properties showed spatial dependence structure over time in three soil layers. After two years of crambe cultivation, soil bulk density and soil resistance to penetration values increased, and soil porosity decreased in all soil layers, showing that crambe root system was not able to improve soil physical composition properties. Soil bulk density up to 1.3Mgm−3 reduced grain yield and increased oil content of crambe. Increased soil bulk density and resistance to penetration, caused by additional soil compaction, changes crambe source/sink relationship, resulting in lower crambe grain yield, but in grains with higher oil content.

Suggested Citation

  • de Marins, Araceli Ciotti & Reichert, José Miguel & Secco, Deonir & Rosa, Helton Aparecido & Veloso, Gustavo, 2018. "Crambe grain yield and oil content affected by spatial variability in soil physical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 464-472.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:464-472
    DOI: 10.1016/j.rser.2017.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117311371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scarlat, Nicolae & Dallemand, Jean-François, 2011. "Recent developments of biofuels/bioenergy sustainability certification: A global overview," Energy Policy, Elsevier, vol. 39(3), pages 1630-1646, March.
    2. Rosa, Helton Aparecido & Wazilewski, Willian Tenfen & Secco, Deonir & Chaves, Luiz Inácio & Veloso, Gustavo & de Souza, Samuel Nelson Melegari & da Silva, Marcelo José & Santos, Reginaldo Ferreira, 2014. "Biodiesel produced from crambe oil in Brazil—A study of performance and emissions in a diesel cycle engine generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 651-655.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Eduardo Akiyoshi Sanches Suzuki & Dalvan José Reinert & Marlene Cristina Alves & José Miguel Reichert, 2022. "Critical Limits for Soybean and Black Bean Root Growth, Based on Macroporosity and Penetrability, for Soils with Distinct Texture and Management Systems," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    2. Costa, E. & Almeida, M.F. & Alvim-Ferraz, C. & Dias, J.M., 2021. "Otimization of Crambe abyssinica enzymatic transesterification using response surface methodology," Renewable Energy, Elsevier, vol. 174(C), pages 444-452.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Thurlow & Giacomo Branca & Erika Felix & Irini Maltsoglou & Luis E. Rincón, 2016. "Producing Biofuels in Low-Income Countries: An Integrated Environmental and Economic Assessment for Tanzania," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 153-171, June.
    2. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    3. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    4. German, Laura & Schoneveld, George, 2012. "A review of social sustainability considerations among EU-approved voluntary schemes for biofuels, with implications for rural livelihoods," Energy Policy, Elsevier, vol. 51(C), pages 765-778.
    5. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Wydra, Sven, 2015. "Challenges for technology diffusion policy to achieve socio-economic goals," Technology in Society, Elsevier, vol. 41(C), pages 76-90.
    7. D´Agosto, Márcio de Almeida & Vieira da Silva, Marcelino Aurélio & de Oliveira, Cíntia Machado & Franca, Luíza Santana & da Costa Marques, Luiz Guilherme & Soares Murta, Aurélio Lamare & de Freitas, M, 2015. "Evaluating the potential of the use of biodiesel for power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 807-817.
    8. Glasenapp, S. & Fonseca, M. & Weimar, H. & Döring, P. & Aguilar, F.X., 2021. "Conversion factors for residential wood energy in the European Union: an introduction to harmonizing units of measurement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Willian Yuki Watanabe de Lima Mera & Ismael de Jesus Matos Viégas & Jessivaldo Rodrigues Galvão & Tiago Kesajiro Moraes Yakuwa & Alasse Oliveira da Silva & Dioclea Almeida Seabra Silva & Ricardo Shi, 2020. "Effects of Liming on the Growth and Nutritional Status of Crambe (Crambe abyssinica Hochst)," Journal of Agricultural Studies, Macrothink Institute, vol. 8(2), pages 590-603, June.
    10. Frank Wijen & Mireille Chiroleu-Assouline, 2019. "Controversy Over Voluntary Environmental Standards: A Socioeconomic Analysis of the Marine Stewardship Council," PSE-Ecole d'économie de Paris (Postprint) halshs-02071504, HAL.
    11. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & Kirsten, Trevor & Acevedo, Helmer & Spina, Pier Ruggero, 2016. "Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP," Applied Energy, Elsevier, vol. 180(C), pages 338-352.
    12. Erdoğan, Sinan & Balki, Mustafa Kemal & Aydın, Selman & Sayin, Cenk, 2019. "The best fuel selection with hybrid multiple-criteria decision making approaches in a CI engine fueled with their blends and pure biodiesels produced from different sources," Renewable Energy, Elsevier, vol. 134(C), pages 653-668.
    13. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    14. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations," Energy Policy, Elsevier, vol. 47(C), pages 384-397.
    15. Carsten Herbes & Lorenz Braun & Dennis Rube, 2016. "Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies," Energies, MDPI, vol. 9(4), pages 1-15, March.
    16. Janda, Karel & Kristoufek, Ladislav & Zilberman, David, "undated". "Biofuels: review of policies and impacts," CUDARE Working Papers 120415, University of California, Berkeley, Department of Agricultural and Resource Economics.
    17. Siegmeier, Torsten & Möller, Detlev, 2013. "Mapping research at the intersection of organic farming and bioenergy — A scientometric review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 197-204.
    18. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    19. Aguilar-Rivera, Noé, 2019. "A framework for the analysis of socioeconomic and geographic sugarcane agro industry sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 149-160.
    20. Mukhtarov, Farhad & Osseweijer, Patricia & Pierce, Robin, 2014. "Global governance of biofuels: a case for public-private governance?," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 3(3), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:464-472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.