IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i3p1470-1479.html
   My bibliography  Save this article

New strategy of pitch angle control for energy management of a wind farm

Author

Listed:
  • Abdelkafi, Achraf
  • Krichen, Lotfi

Abstract

In this paper, we are interested in a Wind Energy Conversion System (WECS) based on a Permanent Magnetic Synchronous Generator (PMSG). The studied WECS is made by the association of three aerogenerators. The objective of this work is to investigate a new strategy of pitch angle control to ensure a balance between the produced energy and the demanded one by the loads. The control strategy of the wind farm is composed of two parts: a local control according to the characteristics of each wind turbine « Pitch control » to protect the turbines against mechanical failure in the event of wind gust and a global control according to the total power demand and the available wind power. This strategy leads to achieving power objectives (active and reactive power targets) and system constraints.

Suggested Citation

  • Abdelkafi, Achraf & Krichen, Lotfi, 2011. "New strategy of pitch angle control for energy management of a wind farm," Energy, Elsevier, vol. 36(3), pages 1470-1479.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1470-1479
    DOI: 10.1016/j.energy.2011.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211000223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner, Hermann-Josef & Pick, Erich, 2004. "Energy yield ratio and cumulative energy demand for wind energy converters," Energy, Elsevier, vol. 29(12), pages 2289-2295.
    2. Rosen, Johannes & Tietze-Stöckinger, Ingela & Rentz, Otto, 2007. "Model-based analysis of effects from large-scale wind power production," Energy, Elsevier, vol. 32(4), pages 575-583.
    3. El Mokadem, M. & Courtecuisse, V. & Saudemont, C. & Robyns, B. & Deuse, J., 2009. "Experimental study of variable speed wind generator contribution to primary frequency control," Renewable Energy, Elsevier, vol. 34(3), pages 833-844.
    4. Lund, Henrik & Clark, Woodrow W., 2002. "Management of fluctuations in wind power and CHP comparing two possible Danish strategies," Energy, Elsevier, vol. 27(5), pages 471-483.
    5. Migoya, Emilio & Crespo, Antonio & García, Javier & Moreno, Fermín & Manuel, Fernando & Jiménez, Ángel & Costa, Alexandre, 2007. "Comparative study of the behavior of wind-turbines in a wind farm," Energy, Elsevier, vol. 32(10), pages 1871-1885.
    6. Michler-Cieluch, Tanja & Krause, Gesche, 2008. "Perceived concerns and possible management strategies for governing 'wind farm-mariculture integration'," Marine Policy, Elsevier, vol. 32(6), pages 1013-1022, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    2. Smail, Houria & Alkama, Rezak & Medjdoub, Abdellah, 2018. "Optimal design of the electric connection of a wind farm," Energy, Elsevier, vol. 165(PB), pages 972-983.
    3. Abdullah, M.A. & Yatim, A.H.M. & Tan, C.W. & Saidur, R., 2012. "A review of maximum power point tracking algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3220-3227.
    4. Seixas, M. & Melício, R. & Mendes, V.M.F., 2014. "Offshore wind turbine simulation: Multibody drive train. Back-to-back NPC (neutral point clamped) converters. Fractional-order control," Energy, Elsevier, vol. 69(C), pages 357-369.
    5. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    6. Abdelkafi, Achraf & Masmoudi, Abdelkarim & Krichen, Lotfi, 2018. "Assisted power management of a stand-alone renewable multi-source system," Energy, Elsevier, vol. 145(C), pages 195-205.
    7. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    8. Fantino, Roberto & Solsona, Jorge & Busada, Claudio, 2016. "Nonlinear observer-based control for PMSG wind turbine," Energy, Elsevier, vol. 113(C), pages 248-257.
    9. Van-Hai Bui & Xuan Quynh Nguyen & Akhtar Hussain & Wencong Su, 2021. "Optimal Sizing of Energy Storage System for Operation of Wind Farms Considering Grid-Code Constraints," Energies, MDPI, vol. 14(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    2. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    3. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    4. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    5. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.
    6. Stephan Nagl & Michaela Fürsch & Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, , vol. 34(4), pages 151-180, October.
    7. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    8. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    9. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    10. van Kooten, G. Cornelis & Timilsina, Govinda R., 2008. "Wind Power Development: Opportunities and Challenges," Working Papers 45665, University of Victoria, Resource Economics and Policy.
    11. Hooper, Tara & Austen, Melanie, 2014. "The co-location of offshore windfarms and decapod fisheries in the UK: Constraints and opportunities," Marine Policy, Elsevier, vol. 43(C), pages 295-300.
    12. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    13. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    14. Franco, Alessandro & Salza, Pasquale, 2011. "Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives," Renewable Energy, Elsevier, vol. 36(2), pages 743-753.
    15. Malça, João & Freire, Fausto, 2006. "Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation," Energy, Elsevier, vol. 31(15), pages 3362-3380.
    16. Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
    17. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    18. Möst, Dominik & Fichtner, Wolf, 2010. "Renewable energy sources in European energy supply and interactions with emission trading," Energy Policy, Elsevier, vol. 38(6), pages 2898-2910, June.
    19. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
    20. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:3:p:1470-1479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.