IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v125y2018icp356-364.html
   My bibliography  Save this article

Oxidative steam reforming of ethanol in a fluidized bed over CeO2-SiO2 supported catalysts: effect of catalytic formulation

Author

Listed:
  • Palma, Vincenzo
  • Ruocco, Concetta
  • Ricca, Antonio

Abstract

Pt-Ni/CeO2-SiO2, K-Pt-Ni/CeO2-SiO2 and Pt-Co/CeO2-SiO2 catalysts, prepared by wet impregnation, were reduced in situ and tested for the oxidative steam reforming of ethanol in a fluidized bed reactor at 500 °C, H2O/C2H5OH ratio of 4 and O2/C2H5OH ratio of 0.5. The results of physiochemical characterization revealed high surface area for all the catalysts, due to their deposition on silica, and considerable reducibility. However, K-addition to the Ni-based sample worsened the catalytic performance: during stability tests, a quite high carbon formation was observed upon potassium doping. Moreover, the K-containing catalyst displayed a not negligible by-products selectivity (i.e. acetaldehyde). On the other hand, Ni substitution by cobalt resulted in significantly lower ethanol conversions and hydrogen yields after 220 h of time-on-stream (TOS). However, all the catalysts at different times reached a plateau condition with no more deactivation. The best results were observed for the Pt-Ni/CeO2-SiO2 catalyst, which displayed a stable performance after 300 h of test, with a reduction in ethanol conversion of only 20%. Carbon formation was measured during the test, demonstrating that coke selectivity progressively decreased with TOS, until observing a net rate of coke formation equal to zero.

Suggested Citation

  • Palma, Vincenzo & Ruocco, Concetta & Ricca, Antonio, 2018. "Oxidative steam reforming of ethanol in a fluidized bed over CeO2-SiO2 supported catalysts: effect of catalytic formulation," Renewable Energy, Elsevier, vol. 125(C), pages 356-364.
  • Handle: RePEc:eee:renene:v:125:y:2018:i:c:p:356-364
    DOI: 10.1016/j.renene.2018.02.118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118302702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mao, Lei & Ye, Hong, 2010. "New development of one-dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications," Renewable Energy, Elsevier, vol. 35(1), pages 249-256.
    2. Jeong, Dae-Woon & Jang, Won-Jun & Shim, Jae-Oh & Han, Won-Bi & Kim, Hak-Min & Lee, Yeol-Lim & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Optimization of a highly active nano-sized Pt/CeO2 catalyst via Ce(OH)CO3 for the water-gas shift reaction," Renewable Energy, Elsevier, vol. 79(C), pages 78-84.
    3. Lopes, Daniel G. & da Silva, E.P. & Pinto, C.S. & Neves, N.P. & Camargo, J.C. & Ferreira, P.F.P. & Furlan, A.L. & Lopes, Davi G., 2012. "Technical and economic analysis of a power supply system based on ethanol reforming and PEMFC," Renewable Energy, Elsevier, vol. 45(C), pages 205-212.
    4. Dan, Monica & Senila, Lacrimioara & Roman, Marius & Mihet, Maria & Lazar, Mihaela D., 2015. "From wood wastes to hydrogen – Preparation and catalytic steam reforming of crude bio-ethanol obtained from fir wood," Renewable Energy, Elsevier, vol. 74(C), pages 27-36.
    5. Kazim, Ayoub, 2010. "Strategy for a sustainable development in the UAE through hydrogen energy," Renewable Energy, Elsevier, vol. 35(10), pages 2257-2269.
    6. Edwards, P.P. & Kuznetsov, V.L. & David, W.I.F. & Brandon, N.P., 2008. "Hydrogen and fuel cells: Towards a sustainable energy future," Energy Policy, Elsevier, vol. 36(12), pages 4356-4362, December.
    7. Tanksale, Akshat & Beltramini, Jorge Norberto & Lu, GaoQing Max, 2010. "A review of catalytic hydrogen production processes from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 166-182, January.
    8. Dave, Chirag D. & Pant, K.K., 2011. "Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst," Renewable Energy, Elsevier, vol. 36(11), pages 3195-3202.
    9. Luo, Zhongyang & Wang, Shurong & Cen, Kefa, 2005. "A model of wood flash pyrolysis in fluidized bed reactor," Renewable Energy, Elsevier, vol. 30(3), pages 377-392.
    10. Meryemoğlu, Bahar & Hasanoğlu, Arif & Kaya, Burçak & Irmak, Sibel & Erbatur, Oktay, 2014. "Hydrogen production from aqueous-phase reforming of sorghum biomass: An application of the response surface methodology," Renewable Energy, Elsevier, vol. 62(C), pages 535-541.
    11. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    12. Do, Truong Xuan & Lim, Young-il, 2016. "Techno-economic comparison of three energy conversion pathways from empty fruit bunches," Renewable Energy, Elsevier, vol. 90(C), pages 307-318.
    13. Adamu, Sagir & Binous, Housam & Razzak, Shaikh A. & Hossain, Mohammad M., 2017. "Enhancement of glucose gasification by Ni/La2O3-Al2O3 towards the thermodynamic extremum at supercritical water conditions," Renewable Energy, Elsevier, vol. 111(C), pages 399-409.
    14. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    15. Kaushal, Priyanka & Tyagi, Rakesh, 2017. "Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS," Renewable Energy, Elsevier, vol. 101(C), pages 629-636.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruocco, Concetta & Palma, Vincenzo & Cortese, Marta & Martino, Marco, 2022. "Stability of bimetallic Ni/CeO2–SiO2 catalysts during fuel grade bioethanol reforming in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 182(C), pages 913-922.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nestor Sanchez & Ruth Yolanda Ruiz & Nicolas Infante & Martha Cobo, 2017. "Bioethanol Production from Cachaza as Hydrogen Feedstock: Effect of Ammonium Sulfate during Fermentation," Energies, MDPI, vol. 10(12), pages 1-16, December.
    2. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    3. Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
    4. Chutichai, Bhawasut & Patcharavorachot, Yaneeporn & Assabumrungrat, Suttichai & Arpornwichanop, Amornchai, 2015. "Parametric analysis of a circulating fluidized bed biomass gasifier for hydrogen production," Energy, Elsevier, vol. 82(C), pages 406-413.
    5. Detchusananard, Thanaphorn & Im-orb, Karittha & Maréchal, François & Arpornwichanop, Amornchai, 2020. "Analysis of the sorption-enhanced chemical looping biomass gasification process: Performance assessment and optimization through design of experiment approach," Energy, Elsevier, vol. 207(C).
    6. Pio, D.T. & Tarelho, L.A.C. & Pinto, P.C.R., 2020. "Gasification-based biorefinery integration in the pulp and paper industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Sanchez, Nestor & Ruiz, Ruth & Rödl, Anne & Cobo, Martha, 2021. "Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector," Renewable Energy, Elsevier, vol. 175(C), pages 825-839.
    8. Pravakar Mohanty & Kamal K. Pant & Ritesh Mittal, 2015. "Hydrogen generation from biomass materials: challenges and opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 139-155, March.
    9. Zainal, Bidattul Syirat & Ker, Pin Jern & Mohamed, Hassan & Ong, Hwai Chyuan & Fattah, I.M.R. & Rahman, S.M. Ashrafur & Nghiem, Long D. & Mahlia, T M Indra, 2024. "Recent advancement and assessment of green hydrogen production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Dou, Binlin & Song, Yongchen & Wang, Chao & Chen, Haisheng & Xu, Yujie, 2014. "Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 950-960.
    11. Hajjaji, Noureddine & Baccar, Ines & Pons, Marie-Noëlle, 2014. "Energy and exergy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming," Renewable Energy, Elsevier, vol. 71(C), pages 368-380.
    12. Gupta, Saurabh & Choudhary, Shikhar & Kumar, Suraj & De, Santanu, 2021. "Large eddy simulation of biomass gasification in a bubbling fluidized bed based on the multiphase particle-in-cell method," Renewable Energy, Elsevier, vol. 163(C), pages 1455-1466.
    13. Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Hydrogen production from steam gasification of polyethylene using a two-stage gasifier and active carbon," Applied Energy, Elsevier, vol. 262(C).
    14. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    15. José Juan Alvarado Flores & Jorge Víctor Alcaraz Vera & María Liliana Ávalos Rodríguez & Luis Bernardo López Sosa & José Guadalupe Rutiaga Quiñones & Luís Fernando Pintor Ibarra & Francisco Márquez Mo, 2022. "Analysis of Pyrolysis Kinetic Parameters Based on Various Mathematical Models for More than Twenty Different Biomasses: A Review," Energies, MDPI, vol. 15(18), pages 1-19, September.
    16. Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
    17. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    18. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    19. Tan Yigitcanlar & Kevin C. Desouza & Luke Butler & Farnoosh Roozkhosh, 2020. "Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature," Energies, MDPI, vol. 13(6), pages 1-38, March.
    20. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:125:y:2018:i:c:p:356-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.