IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v29y2014icp911-923.html
   My bibliography  Save this article

Mixed integer programming of multi-objective security-constrained hydro/thermal unit commitment

Author

Listed:
  • Reza Norouzi, Mohammad
  • Ahmadi, Abdollah
  • Esmaeel Nezhad, Ali
  • Ghaedi, Amir

Abstract

This paper proposes a method for short term security-constrained unit commitment (SCUC) for hydro and thermal generation units. The SCUC problem is modeled as a multi-objective problem to concurrently minimize the ISO's cost as well as minimizing the emissions caused by thermal units. The non-linearity of valve loading effects is linearized in the presented problem. In order to model the SCUC problem more realistically, this paper considers the dynamic ramp rate of thermal units instead of the fixed rate. Moreover, multi-performance curves pertaining to hydro units are developed and the proposed SCUC problem includes the prohibited operating zones (POZs). Besides, the model of SCUC is transformed into mixed integer linear programming (MILP) instead of using mixed integer non-linear programming (MINLP) which has the capability to be solved efficiently using optimization software even for real size power systems. Pareto optimal solutions are generated by employing lexicographic optimization as well as hybrid augmented-weighted ε-constraint technique. Furthermore, a Fuzzy decision maker is utilized in this paper to determine the most preferred solution among Pareto optimal solutions derived through solving the proposed multi-objective SCUC problem. Eventually, the proposed model is implemented on modified IEEE 118-bus system comprising 54 thermal units and 8 hydro units. The simulation results reveal that the solutions obtained from the proposed technique in comparison with other methods established recently are superior in terms of total cost and emission output.

Suggested Citation

  • Reza Norouzi, Mohammad & Ahmadi, Abdollah & Esmaeel Nezhad, Ali & Ghaedi, Amir, 2014. "Mixed integer programming of multi-objective security-constrained hydro/thermal unit commitment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 911-923.
  • Handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:911-923
    DOI: 10.1016/j.rser.2013.09.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113006795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.09.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghaei, J. & Shayanfar, H.A. & Amjady, N., 2009. "Joint market clearing in a stochastic framework considering power system security," Applied Energy, Elsevier, vol. 86(9), pages 1675-1682, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez, Gonzalo E., 2021. "A multi-objective formulation of improving flexibility in the operation of electric power systems: Application to mitigation measures during the coronavirus pandemic," Energy, Elsevier, vol. 227(C).
    2. Shen, Jianjian & Cheng, Chuntian & Cheng, Xiong & Lund, Jay R., 2016. "Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid," Energy, Elsevier, vol. 95(C), pages 433-446.
    3. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    4. van den Broek, Machteld & Berghout, Niels & Rubin, Edward S., 2015. "The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1296-1322.
    5. Singh, Vineet Kumar & Singal, S.K., 2017. "Operation of hydro power plants-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 610-619.
    6. Geng, Zhaowei & Conejo, Antonio J. & Chen, Qixin & Xia, Qing & Kang, Chongqing, 2017. "Electricity production scheduling under uncertainty: Max social welfare vs. min emission vs. max renewable production," Applied Energy, Elsevier, vol. 193(C), pages 540-549.
    7. Esmaeily, Ali & Ahmadi, Abdollah & Raeisi, Fatima & Ahmadi, Mohammad Reza & Esmaeel Nezhad, Ali & Janghorbani, Mohammadreza, 2017. "Evaluating the effectiveness of mixed-integer linear programming for day-ahead hydro-thermal self-scheduling considering price uncertainty and forced outage rate," Energy, Elsevier, vol. 122(C), pages 182-193.
    8. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    9. Morales-España, Germán & Ramírez-Elizondo, Laura & Hobbs, Benjamin F., 2017. "Hidden power system inflexibilities imposed by traditional unit commitment formulations," Applied Energy, Elsevier, vol. 191(C), pages 223-238.
    10. Izadbakhsh, Maziar & Gandomkar, Majid & Rezvani, Alireza & Ahmadi, Abdollah, 2015. "Short-term resource scheduling of a renewable energy based micro grid," Renewable Energy, Elsevier, vol. 75(C), pages 598-606.
    11. Shekarian, Mansoor & Reza Nooraie, Seyed Vahid & Parast, Mahour Mellat, 2020. "An examination of the impact of flexibility and agility on mitigating supply chain disruptions," International Journal of Production Economics, Elsevier, vol. 220(C).
    12. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    13. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2016. "A pilot facility for analysis and simulation of smart microgrids feeding smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1247-1255.
    14. Shen, Jianjian & Cheng, Chuntian & Wang, Sen & Yuan, Xiaoye & Sun, Lifei & Zhang, Jun, 2020. "Multiobjective optimal operations for an interprovincial hydropower system considering peak-shaving demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    2. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    3. Najafi, M. & Ehsan, M. & Fotuhi-Firuzabad, M. & Akhavein, A. & Afshar, K., 2010. "Optimal reserve capacity allocation with consideration of customer reliability requirements," Energy, Elsevier, vol. 35(9), pages 3883-3890.
    4. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    5. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    6. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    7. Behrangrad, Mahdi & Sugihara, Hideharu & Funaki, Tsuyoshi, 2011. "Effect of optimal spinning reserve requirement on system pollution emission considering reserve supplying demand response in the electricity market," Applied Energy, Elsevier, vol. 88(7), pages 2548-2558, July.
    8. Tabandeh, Abbas & Abdollahi, Amir & Rashidinejad, Masoud, 2016. "Reliability constrained congestion management with uncertain negawatt demand response firms considering repairable advanced metering infrastructures," Energy, Elsevier, vol. 104(C), pages 213-228.
    9. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    10. Kargarian, A. & Raoofat, M. & Mohammadi, M., 2011. "Reactive power market management considering voltage control area reserve and system security," Applied Energy, Elsevier, vol. 88(11), pages 3832-3840.
    11. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    12. Saraswat, Amit & Saini, Ashish & Saxena, Ajay Kumar, 2013. "A novel multi-zone reactive power market settlement model: A pareto-optimization approach," Energy, Elsevier, vol. 51(C), pages 85-100.
    13. Fotouhi Ghazvini, Mohammad Ali & Canizes, Bruno & Vale, Zita & Morais, Hugo, 2013. "Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market," Applied Energy, Elsevier, vol. 101(C), pages 667-677.
    14. Aghaei, Jamshid & Nikoobakht, Ahmad & Siano, Pierluigi & Nayeripour, Majid & Heidari, Alireza & Mardaneh, Mohammad, 2016. "Exploring the reliability effects on the short term AC security-constrained unit commitment: A stochastic evaluation," Energy, Elsevier, vol. 114(C), pages 1016-1032.
    15. Ahmed N. Abdalla & Yongfeng Ju & Muhammad Shahzad Nazir & Hai Tao, 2022. "A Robust Economic Framework for Integrated Energy Systems Based on Hybrid Shuffled Frog-Leaping and Local Search Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    16. Fernández-Blanco, Ricardo & Arroyo, José M. & Alguacil, Natalia, 2014. "Consumer payment minimization under uniform pricing: A mixed-integer linear programming approach," Applied Energy, Elsevier, vol. 114(C), pages 676-686.
    17. Amjady, Nima & Keynia, Farshid, 2010. "A new spinning reserve requirement forecast method for deregulated electricity markets," Applied Energy, Elsevier, vol. 87(6), pages 1870-1879, June.
    18. Esmaeily, Ali & Ahmadi, Abdollah & Raeisi, Fatima & Ahmadi, Mohammad Reza & Esmaeel Nezhad, Ali & Janghorbani, Mohammadreza, 2017. "Evaluating the effectiveness of mixed-integer linear programming for day-ahead hydro-thermal self-scheduling considering price uncertainty and forced outage rate," Energy, Elsevier, vol. 122(C), pages 182-193.
    19. Heydarian-Forushani, E. & Golshan, M.E.H. & Shafie-khah, M., 2015. "Flexible security-constrained scheduling of wind power enabling time of use pricing scheme," Energy, Elsevier, vol. 90(P2), pages 1887-1900.
    20. Moradi-Dalvand, M. & Mohammadi-Ivatloo, B. & Amjady, N. & Zareipour, H. & Mazhab-Jafari, A., 2015. "Self-scheduling of a wind producer based on Information Gap Decision Theory," Energy, Elsevier, vol. 81(C), pages 588-600.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:29:y:2014:i:c:p:911-923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.