IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v108y2013icp261-270.html
   My bibliography  Save this article

Mixed integer non-linear programming and Artificial Neural Network based approach to ancillary services dispatch in competitive electricity markets

Author

Listed:
  • Canizes, Bruno
  • Soares, João
  • Faria, Pedro
  • Vale, Zita

Abstract

Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization.

Suggested Citation

  • Canizes, Bruno & Soares, João & Faria, Pedro & Vale, Zita, 2013. "Mixed integer non-linear programming and Artificial Neural Network based approach to ancillary services dispatch in competitive electricity markets," Applied Energy, Elsevier, vol. 108(C), pages 261-270.
  • Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:261-270
    DOI: 10.1016/j.apenergy.2013.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913002274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amjady, Nima & Keynia, Farshid, 2010. "A new spinning reserve requirement forecast method for deregulated electricity markets," Applied Energy, Elsevier, vol. 87(6), pages 1870-1879, June.
    2. Kumar, Ashwani & Gao, Wenzhong, 2009. "Pattern of secure bilateral transactions ensuring power economic dispatch in hybrid electricity markets," Applied Energy, Elsevier, vol. 86(7-8), pages 1000-1010, July.
    3. Ghadikolaei, Hadi Moghimi & Tajik, Elham & Aghaei, Jamshid & Charwand, Mansour, 2012. "Integrated day-ahead and hour-ahead operation model of discos in retail electricity markets considering DGs and CO2 emission penalty cost," Applied Energy, Elsevier, vol. 95(C), pages 174-185.
    4. Fotouhi Ghazvini, Mohammad Ali & Canizes, Bruno & Vale, Zita & Morais, Hugo, 2013. "Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market," Applied Energy, Elsevier, vol. 101(C), pages 667-677.
    5. Chang, Hsueh-Hsien & Yang, Hong-Tzer, 2009. "Applying a non-intrusive energy-management system to economic dispatch for a cogeneration system and power utility," Applied Energy, Elsevier, vol. 86(11), pages 2335-2343, November.
    6. Rabiee, A. & Shayanfar, H. & Amjady, N., 2009. "Multiobjective clearing of reactive power market in deregulated power systems," Applied Energy, Elsevier, vol. 86(9), pages 1555-1564, September.
    7. Li, Gong & Shi, Jing, 2012. "Agent-based modeling for trading wind power with uncertainty in the day-ahead wholesale electricity markets of single-sided auctions," Applied Energy, Elsevier, vol. 99(C), pages 13-22.
    8. Østergaard, Poul Alberg, 2006. "Ancillary services and the integration of substantial quantities of wind power," Applied Energy, Elsevier, vol. 83(5), pages 451-463, May.
    9. Joung, Manho & Kim, Jinho, 2013. "Assessing demand response and smart metering impacts on long-term electricity market prices and system reliability," Applied Energy, Elsevier, vol. 101(C), pages 441-448.
    10. Fragaki, Aikaterini & Andersen, Anders N., 2011. "Conditions for aggregation of CHP plants in the UK electricity market and exploration of plant size," Applied Energy, Elsevier, vol. 88(11), pages 3930-3940.
    11. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    12. Kargarian, A. & Raoofat, M. & Mohammadi, M., 2011. "Reactive power market management considering voltage control area reserve and system security," Applied Energy, Elsevier, vol. 88(11), pages 3832-3840.
    13. Aghaei, J. & Shayanfar, H.A. & Amjady, N., 2009. "Joint market clearing in a stochastic framework considering power system security," Applied Energy, Elsevier, vol. 86(9), pages 1675-1682, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Strušnik, Dušan & Marčič, Milan & Golob, Marjan & Hribernik, Aleš & Živić, Marija & Avsec, Jurij, 2016. "Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling," Applied Energy, Elsevier, vol. 173(C), pages 386-405.
    2. Santos, Gabriel & Pinto, Tiago & Praça, Isabel & Vale, Zita, 2016. "MASCEM: Optimizing the performance of a multi-agent system," Energy, Elsevier, vol. 111(C), pages 513-524.
    3. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    4. Kumar, Abhishek & Meena, Nand K. & Singh, Arvind R. & Deng, Yan & He, Xiangning & Bansal, R.C. & Kumar, Praveen, 2019. "Strategic integration of battery energy storage systems with the provision of distributed ancillary services in active distribution systems," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    2. Kargarian, A. & Raoofat, M. & Mohammadi, M., 2011. "Reactive power market management considering voltage control area reserve and system security," Applied Energy, Elsevier, vol. 88(11), pages 3832-3840.
    3. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Saraswat, Amit & Saini, Ashish & Saxena, Ajay Kumar, 2013. "A novel multi-zone reactive power market settlement model: A pareto-optimization approach," Energy, Elsevier, vol. 51(C), pages 85-100.
    5. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    6. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    7. Esmaili, Masoud & Shayanfar, Heidar Ali & Amjady, Nima, 2010. "Congestion management enhancing transient stability of power systems," Applied Energy, Elsevier, vol. 87(3), pages 971-981, March.
    8. Pruitt, Kristopher A. & Braun, Robert J. & Newman, Alexandra M., 2013. "Establishing conditions for the economic viability of fuel cell-based, combined heat and power distributed generation systems," Applied Energy, Elsevier, vol. 111(C), pages 904-920.
    9. Bracco, Stefano & Bianchi, Enrico & Bianco, Giovanni & Giacchino, Alessandro & Ramaglia, Alessandro & Delfino, Federico, 2022. "On the participation of small-scale high performance combined heat and power plants to the Italian ancillary services market within Virtually Aggregated Mixed Units," Energy, Elsevier, vol. 239(PE).
    10. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    11. Al-Sumaiti, Ameena Saad & Salama, Magdy M.A. & El-Moursi, Mohamed, 2017. "Enabling electricity access in developing countries: A probabilistic weather driven house based approach," Applied Energy, Elsevier, vol. 191(C), pages 531-548.
    12. Ye He & Siming Guo & Yu Wang & Yujia Zhao & Weidong Zhu & Fangyuan Xu & Chun Sing Lai & Ahmed F. Zobaa, 2022. "An Agent-Based Bidding Simulation Framework to Recognize Monopoly Behavior in Power Markets," Energies, MDPI, vol. 16(1), pages 1-19, December.
    13. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    14. Fernández-Blanco, Ricardo & Arroyo, José M. & Alguacil, Natalia, 2014. "Consumer payment minimization under uniform pricing: A mixed-integer linear programming approach," Applied Energy, Elsevier, vol. 114(C), pages 676-686.
    15. Ahmadimanesh, A. & Kalantar, M., 2017. "A novel cost reducing reactive power market structure for modifying mandatory generation regions of producers," Energy Policy, Elsevier, vol. 108(C), pages 702-711.
    16. Esmaili, Masoud & Amjady, Nima & Shayanfar, Heidar Ali, 2011. "Multi-objective congestion management by modified augmented [epsilon]-constraint method," Applied Energy, Elsevier, vol. 88(3), pages 755-766, March.
    17. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Dong, Jun & Xue, Guiyuan & Li, Rong, 2016. "Demand response in China: Regulations, pilot projects and recommendations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 13-27.
    19. Canan Karatekin & Hakan elik, 2020. "The Effects of Renewable Energy Sources on the Structure of the Turkish Electricity Market," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 64-70.
    20. Xin-Rui Liu & Si-Luo Sun & Qiu-Ye Sun & Wei-Yang Zhong, 2020. "Time-Scale Economic Dispatch of Electricity-Heat Integrated System Based on Users’ Thermal Comfort," Energies, MDPI, vol. 13(20), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:108:y:2013:i:c:p:261-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.