A novel multi-zone reactive power market settlement model: A pareto-optimization approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2012.12.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Aghaei, J. & Shayanfar, H.A. & Amjady, N., 2009. "Joint market clearing in a stochastic framework considering power system security," Applied Energy, Elsevier, vol. 86(9), pages 1675-1682, September.
- Rabiee, A. & Shayanfar, H. & Amjady, N., 2009. "Multiobjective clearing of reactive power market in deregulated power systems," Applied Energy, Elsevier, vol. 86(9), pages 1555-1564, September.
- Reddy, S. Surender & Abhyankar, A.R. & Bijwe, P.R., 2011. "Reactive power price clearing using multi-objective optimization," Energy, Elsevier, vol. 36(5), pages 3579-3589.
- Kargarian, A. & Raoofat, M., 2011. "Stochastic reactive power market with volatility of wind power considering voltage security," Energy, Elsevier, vol. 36(5), pages 2565-2571.
- Amjady, N. & Rabiee, A. & Shayanfar, H.A., 2010. "A stochastic framework for clearing of reactive power market," Energy, Elsevier, vol. 35(1), pages 239-245.
- Khazali, A.H. & Kalantar, M. & Khazali, Ali, 2011. "Fuzzy multi-objective reactive power clearing considering reactive compensation sources," Energy, Elsevier, vol. 36(5), pages 3319-3327.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Nian & Chen, Zheng & Liu, Jie & Tang, Xiao & Xiao, Xiangning & Zhang, Jianhua, 2014. "Multi-objective optimization for component capacity of the photovoltaic-based battery switch stations: Towards benefits of economy and environment," Energy, Elsevier, vol. 64(C), pages 779-792.
- Baohua Zhang & Weihao Hu & Peng Hou & Jin Tan & Mohsen Soltani & Zhe Chen, 2017. "Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm," Energies, MDPI, vol. 10(7), pages 1-17, June.
- Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
- Pourakbari-Kasmaei, Mahdi & Rider, Marcos J. & Mantovani, José R.S., 2014. "An unequivocal normalization-based paradigm to solve dynamic economic and emission active-reactive OPF (optimal power flow)," Energy, Elsevier, vol. 73(C), pages 554-566.
- Ippolito, M.G. & Di Silvestre, M.L. & Riva Sanseverino, E. & Zizzo, G. & Graditi, G., 2014. "Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios," Energy, Elsevier, vol. 64(C), pages 648-662.
- Zare, Mohsen & Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Amiri, Babak, 2014. "Multi-objective probabilistic reactive power and voltage control with wind site correlations," Energy, Elsevier, vol. 66(C), pages 810-822.
- Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Wang, Bin, 2018. "A two-stage reactive power optimization in transmission network incorporating reserves from voltage-dependent loads," Energy, Elsevier, vol. 157(C), pages 752-763.
- Sousa, Tiago & Morais, Hugo & Vale, Zita & Castro, Rui, 2015. "A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context," Energy, Elsevier, vol. 85(C), pages 236-250.
- Ahmadimanesh, A. & Kalantar, M., 2017. "A novel cost reducing reactive power market structure for modifying mandatory generation regions of producers," Energy Policy, Elsevier, vol. 108(C), pages 702-711.
- Witanowski, Łukasz & Klonowicz, Piotr & Lampart, Piotr & Ziółkowski, Paweł, 2023. "Multi-objective optimization of the ORC axial turbine for a waste heat recovery system working in two modes: cogeneration and condensation," Energy, Elsevier, vol. 264(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kargarian, A. & Raoofat, M. & Mohammadi, M., 2011. "Reactive power market management considering voltage control area reserve and system security," Applied Energy, Elsevier, vol. 88(11), pages 3832-3840.
- Fernández-Blanco, Ricardo & Arroyo, José M. & Alguacil, Natalia, 2014. "Consumer payment minimization under uniform pricing: A mixed-integer linear programming approach," Applied Energy, Elsevier, vol. 114(C), pages 676-686.
- Esmaili, Masoud & Shayanfar, Heidar Ali & Amjady, Nima, 2010. "Congestion management enhancing transient stability of power systems," Applied Energy, Elsevier, vol. 87(3), pages 971-981, March.
- Esmaili, Masoud & Amjady, Nima & Shayanfar, Heidar Ali, 2011. "Multi-objective congestion management by modified augmented [epsilon]-constraint method," Applied Energy, Elsevier, vol. 88(3), pages 755-766, March.
- Khazali, A.H. & Kalantar, M. & Khazali, Ali, 2011. "Fuzzy multi-objective reactive power clearing considering reactive compensation sources," Energy, Elsevier, vol. 36(5), pages 3319-3327.
- Reddy, S. Surender & Abhyankar, A.R. & Bijwe, P.R., 2011. "Reactive power price clearing using multi-objective optimization," Energy, Elsevier, vol. 36(5), pages 3579-3589.
- Jin, Hongyang & Li, Zhengshuo & Sun, Hongbin & Guo, Qinglai & Wang, Bin, 2018. "A two-stage reactive power optimization in transmission network incorporating reserves from voltage-dependent loads," Energy, Elsevier, vol. 157(C), pages 752-763.
- Canizes, Bruno & Soares, João & Faria, Pedro & Vale, Zita, 2013. "Mixed integer non-linear programming and Artificial Neural Network based approach to ancillary services dispatch in competitive electricity markets," Applied Energy, Elsevier, vol. 108(C), pages 261-270.
- Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
- Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
- Najafi, M. & Ehsan, M. & Fotuhi-Firuzabad, M. & Akhavein, A. & Afshar, K., 2010. "Optimal reserve capacity allocation with consideration of customer reliability requirements," Energy, Elsevier, vol. 35(9), pages 3883-3890.
- Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
- Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
- Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
- Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations," Energies, MDPI, vol. 9(3), pages 1-12, February.
- Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
- Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
- Erdogdu, Erkan, 2010.
"A paper on the unsettled question of Turkish electricity market: Balancing and settlement system (Part I),"
Applied Energy, Elsevier, vol. 87(1), pages 251-258, January.
- Erdogdu, Erkan, 2010. "A paper on the unsettled question of Turkish electricity market: Balancing and settlement system (Part I)," MPRA Paper 19090, University Library of Munich, Germany.
- Behrangrad, Mahdi & Sugihara, Hideharu & Funaki, Tsuyoshi, 2011. "Effect of optimal spinning reserve requirement on system pollution emission considering reserve supplying demand response in the electricity market," Applied Energy, Elsevier, vol. 88(7), pages 2548-2558, July.
- Tabandeh, Abbas & Abdollahi, Amir & Rashidinejad, Masoud, 2016. "Reliability constrained congestion management with uncertain negawatt demand response firms considering repairable advanced metering infrastructures," Energy, Elsevier, vol. 104(C), pages 213-228.
More about this item
Keywords
Day-ahead competitive electricity market; Hybrid fuzzy evolutionary algorithm; Market power; Multi-objective optimization; Pareto-optimal front; Zonal reactive power market settlement;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:51:y:2013:i:c:p:85-100. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.