IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v95y2016icp433-446.html
   My bibliography  Save this article

Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid

Author

Listed:
  • Shen, Jianjian
  • Cheng, Chuntian
  • Cheng, Xiong
  • Lund, Jay R.

Abstract

The bulk hydropower transmission with one-fourth of its total capacity in China via UHVDC (ultra-high-voltage direct current) lines brings a new challenge for receiving power grids. There is an urgent need for coordinated operations about the receiving regional power grids which operate outside energy and their own large plants linked in the AC/DC network. A great operating concern is how to shave peak loads from subordinate provincial power grids using their load differences and various energy source characteristics. The East China Grid, a main receiver of Chinese hydropower transmission and the largest regional power grid, is taken as the example. An integrated framework for coordinating large-scale UHVDC hydropower and conventional hydro energies for power grid peak operation is presented. It divides the original problem into several subproblems according to the types of energy sources. An EPSA (exterior point search algorithm), a heuristic method, and a multi-step optimization algorithm are developed to respectively solve the UHVDC hydropower subproblem, the pumped-storage subproblem, and the conventional hydropower subproblem. These algorithms are integrated into an iterative solution procedure between all subproblems, wherein the EPSA is also applied to allocate power generation among provincial power grids. The proposed method is effective and efficient for coordinating large-scale UHVDC hydropower with conventional hydro energies and for fully responding to different peak loads among provinces, as demonstrated in two case studies.

Suggested Citation

  • Shen, Jianjian & Cheng, Chuntian & Cheng, Xiong & Lund, Jay R., 2016. "Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid," Energy, Elsevier, vol. 95(C), pages 433-446.
  • Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:433-446
    DOI: 10.1016/j.energy.2015.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reza Norouzi, Mohammad & Ahmadi, Abdollah & Esmaeel Nezhad, Ali & Ghaedi, Amir, 2014. "Mixed integer programming of multi-objective security-constrained hydro/thermal unit commitment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 911-923.
    2. Wang, Yongqiang & Zhou, Jianzhong & Mo, Li & Zhang, Rui & Zhang, Yongchuan, 2012. "Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm," Energy, Elsevier, vol. 44(1), pages 657-671.
    3. Nazari, M.E. & Ardehali, M.M. & Jafari, S., 2010. "Pumped-storage unit commitment with considerations for energy demand, economics, and environmental constraints," Energy, Elsevier, vol. 35(10), pages 4092-4101.
    4. Cheng, Chun-Tian & Shen, Jian-Jian & Wu, Xin-Yu & Chau, Kwok-wing, 2012. "Operation challenges for fast-growing China's hydropower systems and respondence to energy saving and emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2386-2393.
    5. Sivasubramani, S. & Swarup, K.S., 2010. "Hybrid SOA–SQP algorithm for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 35(12), pages 5031-5036.
    6. Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
    7. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Jianjian & Cheng, Chuntian & Wu, Xinyu & Cheng, Xiong & Li, Weidong & Lu, Jianyu, 2014. "Optimization of peak loads among multiple provincial power grids under a central dispatching authority," Energy, Elsevier, vol. 74(C), pages 494-505.
    2. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    3. Glotić, Arnel & Glotić, Adnan & Kitak, Peter & Pihler, Jože & Tičar, Igor, 2014. "Optimization of hydro energy storage plants by using differential evolution algorithm," Energy, Elsevier, vol. 77(C), pages 97-107.
    4. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "The impact of storage facility capacity and ramping capabilities on the supply side economic dispatch of the energy–water nexus," Energy, Elsevier, vol. 66(C), pages 363-377.
    5. Bao, Chao & Fang, Chuang-lin, 2013. "Geographical and environmental perspectives for the sustainable development of renewable energy in urbanizing China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 464-474.
    6. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    7. Wang, Yongqiang & Zhou, Jianzhong & Mo, Li & Zhang, Rui & Zhang, Yongchuan, 2012. "Short-term hydrothermal generation scheduling using differential real-coded quantum-inspired evolutionary algorithm," Energy, Elsevier, vol. 44(1), pages 657-671.
    8. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    9. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    10. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    11. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    12. Singh, Vineet Kumar & Singal, S.K., 2017. "Operation of hydro power plants-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 610-619.
    13. Shen, Jianjian & Cheng, Chuntian & Wang, Sen & Yuan, Xiaoye & Sun, Lifei & Zhang, Jun, 2020. "Multiobjective optimal operations for an interprovincial hydropower system considering peak-shaving demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    14. Moradi, Saeed & Khanmohammadi, Sohrab & Hagh, Mehrdad Tarafdar & Mohammadi-ivatloo, Behnam, 2015. "A semi-analytical non-iterative primary approach based on priority list to solve unit commitment problem," Energy, Elsevier, vol. 88(C), pages 244-259.
    15. Pérez-Díaz, Juan I. & Jiménez, Javier, 2016. "Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration," Energy, Elsevier, vol. 109(C), pages 92-104.
    16. Mohammadi-ivatloo, Behnam & Rabiee, Abbas & Soroudi, Alireza & Ehsan, Mehdi, 2012. "Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch," Energy, Elsevier, vol. 44(1), pages 228-240.
    17. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    18. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    20. Xu, Li-jun & Fan, Xiao-chao & Wang, Wei-qing & Xu, Lei & Duan, You-lian & Shi, Rui-jing, 2017. "Renewable and sustainable energy of Xinjiang and development strategy of node areas in the “Silk Road Economic Belt”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 274-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:95:y:2016:i:c:p:433-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.