IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v23y2013icp179-213.html
   My bibliography  Save this article

Waste tyre pyrolysis – A review

Author

Listed:
  • Martínez, Juan Daniel
  • Puy, Neus
  • Murillo, Ramón
  • García, Tomás
  • Navarro, María Victoria
  • Mastral, Ana Maria

Abstract

This review deals with the state-of-the-art of waste tyre pyrolysis for the first time in literature. Pyrolysis has been addressed as an attractive thermochemical process to tackle the waste tyre disposal problem while allowing energy recovery. Pyrolysis enables the separation of carbon black from tyres and the volatile matter released (condensable and non-condensable compounds) has the potential of renewable energy recovery given the significant proportion of natural rubber present in the tyre. Given this waste-to-energy pathway, a comprehensive review has been carried out in order to show the effects of the main process conditions (heating rate, temperature, pressure, carrier gas flow rate and type, volatiles residence time and pyrolysis time) on the physicochemical properties and distributions of the resulting products (gas, liquid and solid fractions). It has also been reviewed the influence of the size and composition of the feedstock. All reported results have been framed regarding the type of reactor as well as the experimental conditions used to avoid contradictions among the large number of publications on the subject. It is shown that the occurrence of secondary reactions is very sensitive to the interaction of the aforementioned variables. Also, the main properties of the pyrolytic products are pointed out. The liquid and gaseous fractions obtained are a valuable fuel source; while the solid fraction (char) has the recovery potential of low- grade carbon black or as carbon adsorbent after applying an activation step. Special attention has been given to the liquid fraction, highlighting its properties as alternative fuel in compression ignition engines.

Suggested Citation

  • Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.
  • Handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:179-213
    DOI: 10.1016/j.rser.2013.02.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113001408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.02.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
    2. Mokrzycki, Eugeniusz & Uliasz-Bochenczyk, Alicja & Sarna, Mieczyslaw, 2003. "Use of alternative fuels in the Polish cement industry," Applied Energy, Elsevier, vol. 74(1-2), pages 101-111, January.
    3. Sharma, V. K. & Fortuna, F. & Mincarini, M. & Berillo, M. & Cornacchia, G., 2000. "Disposal of waste tyres for energy recovery and safe environment," Applied Energy, Elsevier, vol. 65(1-4), pages 381-394, April.
    4. Lee, Jong Min & Lee, Jung Soo & Kim, Jung Rae & Kim, Sang Done, 1995. "Pyrolysis of waste tires with partial oxidation in a fluidized-bed reactor," Energy, Elsevier, vol. 20(10), pages 969-976.
    5. Mokrzycki, Eugeniusz & Uliasz- Bochenczyk, Alicja, 2003. "Alternative fuels for the cement industry," Applied Energy, Elsevier, vol. 74(1-2), pages 95-100, January.
    6. Dai, Xianwen & Yin, Xiuli & Wu, Chuangzhi & Zhang, Wennan & Chen, Yong, 2001. "Pyrolysis of waste tires in a circulating fluidized-bed reactor," Energy, Elsevier, vol. 26(4), pages 385-399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
    2. Zhang, Menghui & Qi, Yongfeng & Zhang, Wan & Wang, Meiting & Li, Jingyi & Lu, Yi & Zhang, Sheng & He, Jiazheng & Cao, Hao & Tao, Xuan & Xu, Hanlu & Zhang, Sheng, 2024. "A review on waste tires pyrolysis for energy and material recovery from the optimization perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Tsiliyannis, C.A., 2016. "Cement manufacturing using alternative fuels: Enhanced productivity and environmental compliance via oxygen enrichment," Energy, Elsevier, vol. 113(C), pages 1202-1218.
    4. Teklay, Abraham & Yin, Chungen & Rosendahl, Lasse, 2016. "Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: A way to reduce CO2 footprint from cement industry," Applied Energy, Elsevier, vol. 162(C), pages 1218-1224.
    5. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    6. Lamas, Wendell de Queiroz & Palau, Jose Carlos Fortes & Camargo, Jose Rubens de, 2013. "Waste materials co-processing in cement industry: Ecological efficiency of waste reuse," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 200-207.
    7. Huh, Sung-Yoon & Lee, Hyejin & Shin, Jungwoo & Lee, Donghyun & Jang, Jinyoung, 2018. "Inter-fuel substitution path analysis of the korea cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4091-4099.
    8. Reza, Bahareh & Soltani, Atousa & Ruparathna, Rajeev & Sadiq, Rehan & Hewage, Kasun, 2013. "Environmental and economic aspects of production and utilization of RDF as alternative fuel in cement plants: A case study of Metro Vancouver Waste Management," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 105-114.
    9. Grzegorz Ludwik Golewski, 2020. "Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition," Energies, MDPI, vol. 13(9), pages 1-20, May.
    10. Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
    11. Tsiligiannis, Aristeides & Tsiliyannis, Christos, 2020. "Oil refinery sludge and renewable fuel blends as energy sources for the cement industry," Renewable Energy, Elsevier, vol. 157(C), pages 55-70.
    12. Mohammad I. Jahirul & Farhad M. Hossain & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury, 2021. "A Review on the Thermochemical Recycling of Waste Tyres to Oil for Automobile Engine Application," Energies, MDPI, vol. 14(13), pages 1-18, June.
    13. Puig-Arnavat, Maria & Søgaard, Martin & Hjuler, Klaus & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Hendriksen, Peter Vang, 2015. "Integration of oxygen membranes for oxygen production in cement plants," Energy, Elsevier, vol. 91(C), pages 852-865.
    14. Essossinam Beguedou & Satyanarayana Narra & Ekua Afrakoma Armoo & Komi Agboka & Mani Kongnine Damgou, 2023. "Alternative Fuels Substitution in Cement Industries for Improved Energy Efficiency and Sustainability," Energies, MDPI, vol. 16(8), pages 1-29, April.
    15. Bi, Rongshan & Zhang, Yan & Jiang, Xiao & Yang, Haixing & Yan, Kejia & Han, Min & Li, Wenhua & Zhong, Hua & Tan, Xinshun & Xia, Li & Sun, Xiaoyan & Xiang, Shuangguang, 2022. "Simulation and techno-economical analysis on the pyrolysis process of waste tire," Energy, Elsevier, vol. 260(C).
    16. Xinhang Xu & Chongchong Qi & Xabier M. Aretxabaleta & Chundi Ma & Dino Spagnoli & Hegoi Manzano, 2024. "The initial stages of cement hydration at the molecular level," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
    18. Li, Jia & Tharakan, Pradeep & Macdonald, Douglas & Liang, Xi, 2013. "Technological, economic and financial prospects of carbon dioxide capture in the cement industry," Energy Policy, Elsevier, vol. 61(C), pages 1377-1387.
    19. Song, Dan & Yang, Jin & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Life-cycle environmental impact analysis of a typical cement production chain," Applied Energy, Elsevier, vol. 164(C), pages 916-923.
    20. Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:179-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.