IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp916-923.html
   My bibliography  Save this article

Life-cycle environmental impact analysis of a typical cement production chain

Author

Listed:
  • Song, Dan
  • Yang, Jin
  • Chen, Bin
  • Hayat, Tasawar
  • Alsaedi, Ahmed

Abstract

Cement is one of the three main construction materials, which provides support for other related industries and fuels the economic growth. However, cement production is also a high-polluting sector. In this study, a life-cycle environmental assessment was performed for a typical new suspension preheater dry process (NSP) cement production in China. A comparison of the life cycle environmental impact of best available technologies was also conducted by setting a series of scenarios so as to find the most promising alternative in reducing environmental impacts. The results suggest that although direct calcination is the largest contributor of environmental emissions in the cement production system, indirect sections, particularly the downstream grinding section, play an important role in terms of environmental impact, which should be considered as the control point in achieving energy saving and emission reduction goal. Comparing the environmental performance of raw material and fuel substitution alternatives and best available technologies, the results of scenario analysis reveals that environmental benefits of carbide slag and the mixture of carbide slag and limestone slag as raw material substitutions is not prominent as it induces extra environmental costs that offset the environmental benefits from reduced limestone usage. Corn straw as coal substitution and heat recovery and cogeneration are found to be promising ways to achieve environmental mitigation with a notable environmental benefit for cement production. The prevailing NSP kiln technology is more environmental beneficial compared with shaft kiln technology.

Suggested Citation

  • Song, Dan & Yang, Jin & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Life-cycle environmental impact analysis of a typical cement production chain," Applied Energy, Elsevier, vol. 164(C), pages 916-923.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:916-923
    DOI: 10.1016/j.apenergy.2015.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokrzycki, Eugeniusz & Uliasz-Bochenczyk, Alicja & Sarna, Mieczyslaw, 2003. "Use of alternative fuels in the Polish cement industry," Applied Energy, Elsevier, vol. 74(1-2), pages 101-111, January.
    2. Mokrzycki, Eugeniusz & Uliasz- Bochenczyk, Alicja, 2003. "Alternative fuels for the cement industry," Applied Energy, Elsevier, vol. 74(1-2), pages 95-100, January.
    3. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanuel Hache & Marine Simoën & Gondia Sokhna Seck & Clément Bonnet & Aymen Jabberi, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, CEPII research center, issue 163, pages 114-133.
    2. Maris Sinka & Jelizaveta Zorica & Diana Bajare & Genadijs Sahmenko & Aleksandrs Korjakins, 2020. "Fast Setting Binders for Application in 3D Printing of Bio-Based Building Materials," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    3. Viktoria Mannheim & Weronika Kruszelnicka, 2022. "Energy-Model and Life Cycle-Model for Grinding Processes of Limestone Products," Energies, MDPI, vol. 15(10), pages 1-20, May.
    4. Chunlei Zhou & Donghai Xuan & Yuhan Miao & Xiaohu Luo & Wensi Liu & Yihong Zhang, 2023. "Accounting CO 2 Emissions of the Cement Industry: Based on an Electricity–Carbon Coupling Analysis," Energies, MDPI, vol. 16(11), pages 1-13, May.
    5. Cai, Wei & Lai, Kee-hung, 2021. "Sustainability assessment of mechanical manufacturing systems in the industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    7. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    8. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    9. Summerbell, Daniel L. & Khripko, Diana & Barlow, Claire & Hesselbach, Jens, 2017. "Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant," Applied Energy, Elsevier, vol. 197(C), pages 100-113.
    10. Kubilay Kaptan & Sandra Cunha & José Aguiar, 2024. "A Review: Construction and Demolition Waste as a Novel Source for CO 2 Reduction in Portland Cement Production for Concrete," Sustainability, MDPI, vol. 16(2), pages 1-50, January.
    11. Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Ludwik Golewski, 2020. "Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition," Energies, MDPI, vol. 13(9), pages 1-20, May.
    2. Aranda Usón, Alfonso & López-Sabirón, Ana M. & Ferreira, Germán & Llera Sastresa, Eva, 2013. "Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 242-260.
    3. Tsiliyannis, C.A., 2016. "Cement manufacturing using alternative fuels: Enhanced productivity and environmental compliance via oxygen enrichment," Energy, Elsevier, vol. 113(C), pages 1202-1218.
    4. Teklay, Abraham & Yin, Chungen & Rosendahl, Lasse, 2016. "Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: A way to reduce CO2 footprint from cement industry," Applied Energy, Elsevier, vol. 162(C), pages 1218-1224.
    5. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    6. Lamas, Wendell de Queiroz & Palau, Jose Carlos Fortes & Camargo, Jose Rubens de, 2013. "Waste materials co-processing in cement industry: Ecological efficiency of waste reuse," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 200-207.
    7. Huh, Sung-Yoon & Lee, Hyejin & Shin, Jungwoo & Lee, Donghyun & Jang, Jinyoung, 2018. "Inter-fuel substitution path analysis of the korea cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4091-4099.
    8. Reza, Bahareh & Soltani, Atousa & Ruparathna, Rajeev & Sadiq, Rehan & Hewage, Kasun, 2013. "Environmental and economic aspects of production and utilization of RDF as alternative fuel in cement plants: A case study of Metro Vancouver Waste Management," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 105-114.
    9. Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
    10. Tsiligiannis, Aristeides & Tsiliyannis, Christos, 2020. "Oil refinery sludge and renewable fuel blends as energy sources for the cement industry," Renewable Energy, Elsevier, vol. 157(C), pages 55-70.
    11. Puig-Arnavat, Maria & Søgaard, Martin & Hjuler, Klaus & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Hendriksen, Peter Vang, 2015. "Integration of oxygen membranes for oxygen production in cement plants," Energy, Elsevier, vol. 91(C), pages 852-865.
    12. Essossinam Beguedou & Satyanarayana Narra & Ekua Afrakoma Armoo & Komi Agboka & Mani Kongnine Damgou, 2023. "Alternative Fuels Substitution in Cement Industries for Improved Energy Efficiency and Sustainability," Energies, MDPI, vol. 16(8), pages 1-29, April.
    13. Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
    14. Xinhang Xu & Chongchong Qi & Xabier M. Aretxabaleta & Chundi Ma & Dino Spagnoli & Hegoi Manzano, 2024. "The initial stages of cement hydration at the molecular level," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Li, Jia & Tharakan, Pradeep & Macdonald, Douglas & Liang, Xi, 2013. "Technological, economic and financial prospects of carbon dioxide capture in the cement industry," Energy Policy, Elsevier, vol. 61(C), pages 1377-1387.
    16. Ali, M.B. & Saidur, R. & Hossain, M.S., 2011. "A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2252-2261, June.
    17. Ewa Strzałkowska, 2023. "Ashes Qualified as a Source of Selected Critical Elements (REY, Co, Ga, V)," Energies, MDPI, vol. 16(8), pages 1-19, April.
    18. Sandberg, Erik & Toffolo, Andrea & Krook-Riekkola, Anna, 2019. "A bottom-up study of biomass and electricity use in a fossil free Swedish industry," Energy, Elsevier, vol. 167(C), pages 1019-1030.
    19. Bernardo, G. & Marroccoli, M. & Nobili, M. & Telesca, A. & Valenti, G.L., 2007. "The use of oil well-derived drilling waste and electric arc furnace slag as alternative raw materials in clinker production," Resources, Conservation & Recycling, Elsevier, vol. 52(1), pages 95-102.
    20. Christos Aristeides Tsiliyannis, 2018. "Industrial Wastes and By‐products as Alternative Fuels in Cement Plants: Evaluation of an Industrial Symbiosis Option," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1170-1188, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:916-923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.