IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v206y2024ics1364032124005926.html
   My bibliography  Save this article

A comprehensive consumption-based carbon accounting framework for power system towards low-carbon transition

Author

Listed:
  • Ling, Chen
  • Yang, Qing
  • Wang, Qingrui
  • Bartocci, Pietro
  • Jiang, Lei
  • Xu, Zishuo
  • Wang, Luyao

Abstract

Nearly 40 % current global annual energy-related CO2 emissions come from the fossil fuel-dominated power sector. Accurately accounting for carbon emissions in power systems from the consumption-based perspective is crucial for achieving the low-carbon power transition. Consumption-based carbon accounting has emerged as a major research focus, which aids in the implementation of targeted measures such as low-carbon demand response and dispatch. Choosing an appropriate method to account carbon emission needs thorough consideration of characteristics of various methods. There still lacks a systematic review that concludes the essence and application status of these methods, as well as comparing their advantages and disadvantages. To address this gap, a consumption-based carbon accounting framework for power systems is proposed. This framework groups four typical methods into two perspectives: Attributional methods and consequential methods. The principles, calculation approaches, and research application status of these methods are comprehensively summarized in a transparent, integrated and comparative manner, which makes progress in two critical limitations: (i) temporal and spatial granularity, and (ii) consideration of the actual topology and operational constraints of the power grid. As improvements in the transparency and quality of electricity data and expansion of application scenarios, the flexibility and applicability of the framework will continue to improve to achieve the unity of efficiency and fairness. The proposed framework can serve as a valuable guide to conducting research and exploration on low-carbon energy management, policy and regulatory decisions and to inform the development of effective strategies for the low-carbon transition of power systems.

Suggested Citation

  • Ling, Chen & Yang, Qing & Wang, Qingrui & Bartocci, Pietro & Jiang, Lei & Xu, Zishuo & Wang, Luyao, 2024. "A comprehensive consumption-based carbon accounting framework for power system towards low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005926
    DOI: 10.1016/j.rser.2024.114866
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    3. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    4. Jieran Feng & Junpei Nan & Chao Wang & Ke Sun & Xu Deng & Hao Zhou, 2022. "Source-Load Coordinated Low-Carbon Economic Dispatch of Electric-Gas Integrated Energy System Based on Carbon Emission Flow Theory," Energies, MDPI, vol. 15(10), pages 1-24, May.
    5. Qu, Shen & Wang, Hongxia & Liang, Sai & Shapiro, Avi M. & Suh, Sanwong & Sheldon, Seth & Zik, Ory & Fang, Hong & Xu, Ming, 2017. "A Quasi-Input-Output model to improve the estimation of emission factors for purchased electricity from interconnected grids," Applied Energy, Elsevier, vol. 200(C), pages 249-259.
    6. Nilsson, Anders & Stoll, Pia & Brandt, Nils, 2017. "Assessing the impact of real-time price visualization on residential electricity consumption, costs, and carbon emissions," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 152-161.
    7. Ji, Ling & Liang, Sai & Qu, Shen & Zhang, Yanxia & Xu, Ming & Jia, Xiaoping & Jia, Yingtao & Niu, Dongxiao & Yuan, Jiahai & Hou, Yong & Wang, Haikun & Chiu, Anthony S.F. & Hu, Xiaojun, 2016. "Greenhouse gas emission factors of purchased electricity from interconnected grids," Applied Energy, Elsevier, vol. 184(C), pages 751-758.
    8. Kun Peng & Kuishuang Feng & Bin Chen & Yuli Shan & Ning Zhang & Peng Wang & Kai Fang & Yanchao Bai & Xiaowei Zou & Wendong Wei & Xinyi Geng & Yiyi Zhang & Jiashuo Li, 2023. "The global power sector’s low-carbon transition may enhance sustainable development goal achievement," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Finenko, Anton & Cheah, Lynette, 2016. "Temporal CO2 emissions associated with electricity generation: Case study of Singapore," Energy Policy, Elsevier, vol. 93(C), pages 70-79.
    10. Beltrami, Filippo & Burlinson, Andrew & Giulietti, Monica & Grossi, Luigi & Rowley, Paul & Wilson, Grant, 2020. "Where did the time (series) go? Estimation of marginal emission factors with autoregressive components," Energy Economics, Elsevier, vol. 91(C).
    11. Park, Byungkwon & Dong, Jin & Liu, Boming & Kuruganti, Teja, 2023. "Decarbonizing the grid: Utilizing demand-side flexibility for carbon emission reduction through locational marginal emissions in distribution networks," Applied Energy, Elsevier, vol. 330(PA).
    12. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.
    13. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan & Zhang, Xian & Wang, Guibin, 2020. "Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems," Applied Energy, Elsevier, vol. 280(C).
    14. Junpei Nan & Jieran Feng & Xu Deng & Chao Wang & Ke Sun & Hao Zhou, 2022. "Hierarchical Low-Carbon Economic Dispatch with Source-Load Bilateral Carbon-Trading Based on Aumann–Shapley Method," Energies, MDPI, vol. 15(15), pages 1-17, July.
    15. David Bristow & Russell Richman & Adam Kirsh & Christopher A. Kennedy & Kim D. Pressnail, 2011. "Hour‐by‐Hour Analysis for Increased Accuracy of Greenhouse Gas Emissions for a Low‐Energy Condominium Design," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 381-393, June.
    16. Wang, Ning & Ren, Yixin & Zhu, Tao & Meng, Fanxin & Wen, Zongguo & Liu, Gengyuan, 2018. "Life cycle carbon emission modelling of coal-fired power: Chinese case," Energy, Elsevier, vol. 162(C), pages 841-852.
    17. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    18. Nicole A. Ryan & Jeremiah X. Johnson & Gregory A. Keoleian & Geoffrey M. Lewis, 2018. "Decision Support Algorithm for Evaluating Carbon Dioxide Emissions from Electricity Generation in the United States," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1318-1330, December.
    19. Li, Mo & Yang, Yi & Smith, Timothy M. & Wilson, Elizabeth J., 2020. "Wind can reduce storage-induced emissions at grid scales," Applied Energy, Elsevier, vol. 276(C).
    20. Wang, Y. & Wang, C. & Miller, C.J. & McElmurry, S.P. & Miller, S.S. & Rogers, M.M., 2014. "Locational marginal emissions: Analysis of pollutant emission reduction through spatial management of load distribution," Applied Energy, Elsevier, vol. 119(C), pages 141-150.
    21. Bettle, R. & Pout, C.H. & Hitchin, E.R., 2006. "Interactions between electricity-saving measures and carbon emissions from power generation in England and Wales," Energy Policy, Elsevier, vol. 34(18), pages 3434-3446, December.
    22. Hu, Tingli & Wang, Caisheng & Miller, Carol, 2021. "Identification of marginal generation units based on publicly available information," Applied Energy, Elsevier, vol. 281(C).
    23. Feng Xu & Yi Lu & Qunhai Huo & Jingyuan Yin & Peng Qiu & Chao Ding, 2022. "Flexible Low-Carbon Optimal Dispatch of Honeycombed Active Distribution Network," Energies, MDPI, vol. 15(19), pages 1-20, September.
    24. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni, 2015. "Embodied CO2 emissions and cross-border electricity trade in Europe: Rebalancing burden sharing with energy storage," Applied Energy, Elsevier, vol. 143(C), pages 283-300.
    25. Braeuer, Fritz & Finck, Rafael & McKenna, Russell, 2020. "Comparing empirical and model-based approaches for calculating dynamic grid emission factors: An application to CO₂-minimizing storage dispatch in Germany," Working Paper Series in Production and Energy 44, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    26. Yang, Christopher, 2013. "A framework for allocating greenhouse gas emissions from electricity generation to plug-in electric vehicle charging," Energy Policy, Elsevier, vol. 60(C), pages 722-732.
    27. Rogers, Michelle M. & Wang, Yang & Wang, Caisheng & McElmurry, Shawn P. & Miller, Carol J., 2013. "Evaluation of a rapid LMP-based approach for calculating marginal unit emissions," Applied Energy, Elsevier, vol. 111(C), pages 812-820.
    28. Voorspools, Kris R. & D'haeseleer, William D., 2000. "An evaluation method for calculating the emission responsibility of specific electric applications," Energy Policy, Elsevier, vol. 28(13), pages 967-980, November.
    29. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    30. Stephen P. Holland & Erin T. Mansur, 2008. "Is Real-Time Pricing Green? The Environmental Impacts of Electricity Demand Variance," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 550-561, August.
    31. Jiusto, Scott, 2006. "The differences that methods make: Cross-border power flows and accounting for carbon emissions from electricity use," Energy Policy, Elsevier, vol. 34(17), pages 2915-2928, November.
    32. Li, Yaowang & Yang, Xuxin & Du, Ershun & Liu, Yuliang & Zhang, Shixu & Yang, Chen & Zhang, Ning & Liu, Chang, 2024. "A review on carbon emission accounting approaches for the electricity power industry," Applied Energy, Elsevier, vol. 359(C).
    33. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2018. "Barriers to investment in utility-scale variable renewable electricity (VRE) generation projects," Renewable Energy, Elsevier, vol. 121(C), pages 730-744.
    34. Chen, G. & Chen, B. & Zhou, H. & Dai, P., 2013. "Life cycle carbon emission flow analysis for electricity supply system: A case study of China," Energy Policy, Elsevier, vol. 61(C), pages 1276-1284.
    35. Hawkes, A.D., 2014. "Long-run marginal CO2 emissions factors in national electricity systems," Applied Energy, Elsevier, vol. 125(C), pages 197-205.
    36. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    37. Ji, Shiyu & Chen, Bin, 2016. "Carbon footprint accounting of a typical wind farm in China," Applied Energy, Elsevier, vol. 180(C), pages 416-423.
    38. Baumgärtner, Nils & Delorme, Roman & Hennen, Maike & Bardow, André, 2019. "Design of low-carbon utility systems: Exploiting time-dependent grid emissions for climate-friendly demand-side management," Applied Energy, Elsevier, vol. 247(C), pages 755-765.
    39. Stoll, Pia & Brandt, Nils & Nordström, Lars, 2014. "Including dynamic CO2 intensity with demand response," Energy Policy, Elsevier, vol. 65(C), pages 490-500.
    40. Michaja Pehl & Anders Arvesen & Florian Humpenöder & Alexander Popp & Edgar G. Hertwich & Gunnar Luderer, 2017. "Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling," Nature Energy, Nature, vol. 2(12), pages 939-945, December.
    41. Bo Tranberg & Olivier Corradi & Bruno Lajoie & Thomas Gibon & Iain Staffell & Gorm Bruun Andresen, 2018. "Real-Time Carbon Accounting Method for the European Electricity Markets," Papers 1812.06679, arXiv.org, revised May 2019.
    42. Charlie C. Spork & Abel Chavez & Xavier Gabarrell Durany & Martin K. Patel & Gara Villalba Méndez, 2015. "Increasing Precision in Greenhouse Gas Accounting Using Real-Time Emission Factors," Journal of Industrial Ecology, Yale University, vol. 19(3), pages 380-390, June.
    43. John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
    44. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    45. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).
    46. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    47. Xiaoming Zhou & Maosheng Sang & Minglei Bao & Yi Ding, 2022. "Tracing and Evaluating Life-Cycle Carbon Emissions of Urban Multi-Energy Systems," Energies, MDPI, vol. 15(8), pages 1-19, April.
    48. Joseph S. Colett & Jarod C. Kelly & Gregory A. Keoleian, 2016. "Using Nested Average Electricity Allocation Protocols to Characterize Electrical Grids in Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 20(1), pages 29-41, February.
    49. Harmsen, Robert & Graus, Wina, 2013. "How much CO2 emissions do we reduce by saving electricity? A focus on methods," Energy Policy, Elsevier, vol. 60(C), pages 803-812.
    50. Zhang, Yue-Jun & Wang, Wei, 2021. "How does China's carbon emissions trading (CET) policy affect the investment of CET-covered enterprises?," Energy Economics, Elsevier, vol. 98(C).
    51. Jieran Feng & Hao Zhou, 2022. "Bi-Level Optimal Capacity Planning of Load-Side Electric Energy Storage Using an Emission-Considered Carbon Incentive Mechanism," Energies, MDPI, vol. 15(13), pages 1-18, June.
    52. Thomson, R. Camilla & Harrison, Gareth P. & Chick, John P., 2017. "Marginal greenhouse gas emissions displacement of wind power in Great Britain," Energy Policy, Elsevier, vol. 101(C), pages 201-210.
    53. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan, 2022. "Robust energy systems scheduling considering uncertainties and demand side emission impacts," Energy, Elsevier, vol. 239(PD).
    54. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    55. Hawkes, A.D., 2010. "Estimating marginal CO2 emissions rates for national electricity systems," Energy Policy, Elsevier, vol. 38(10), pages 5977-5987, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    2. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).
    3. Chaparro, Iván & Watts, David & Gil, Esteban, 2017. "Modeling marginal CO2 emissions in hydrothermal systems: Efficient carbon signals for renewables," Applied Energy, Elsevier, vol. 204(C), pages 318-331.
    4. Braeuer, Fritz & Finck, Rafael & McKenna, Russell, 2020. "Comparing empirical and model-based approaches for calculating dynamic grid emission factors: An application to CO₂-minimizing storage dispatch in Germany," Working Paper Series in Production and Energy 44, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    5. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
    6. Souhir Ben Amor & Smaranda Sgarciu & Taimyra BatzLineiro & Felix Muesgens, 2024. "Advanced Models for Hourly Marginal CO2 Emission Factor Estimation: A Synergy between Fundamental and Statistical Approaches," Papers 2412.17379, arXiv.org.
    7. Beltrami, Filippo & Burlinson, Andrew & Giulietti, Monica & Grossi, Luigi & Rowley, Paul & Wilson, Grant, 2020. "Where did the time (series) go? Estimation of marginal emission factors with autoregressive components," Energy Economics, Elsevier, vol. 91(C).
    8. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Baumgärtner, Nils & Delorme, Roman & Hennen, Maike & Bardow, André, 2019. "Design of low-carbon utility systems: Exploiting time-dependent grid emissions for climate-friendly demand-side management," Applied Energy, Elsevier, vol. 247(C), pages 755-765.
    10. Hawkes, A.D., 2014. "Long-run marginal CO2 emissions factors in national electricity systems," Applied Energy, Elsevier, vol. 125(C), pages 197-205.
    11. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    12. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2024. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Applied Energy, Elsevier, vol. 371(C).
    13. Bigazzi, Alexander, 2019. "Comparison of marginal and average emission factors for passenger transportation modes," Applied Energy, Elsevier, vol. 242(C), pages 1460-1466.
    14. Förster, Robert & Harding, Sebastian & Buhl, Hans Ulrich, 2024. "Unleashing the economic and ecological potential of energy flexibility: Attractiveness of real-time electricity tariffs in energy crises," Energy Policy, Elsevier, vol. 185(C).
    15. Biéron, M. & Le Dréau, J. & Haas, B., 2023. "Assessment of the marginal technologies reacting to demand response events: A French case-study," Energy, Elsevier, vol. 275(C).
    16. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2023. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Working Paper Series in Production and Energy 69, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    17. Beltrami, Filippo, 2024. "The impact of hydroelectric storage in Northern Italy’s power market," Energy Policy, Elsevier, vol. 191(C).
    18. Wolf, Isabel & Holzapfel, Peter K.R. & Meschede, Henning & Finkbeiner, Matthias, 2023. "On the potential of temporally resolved GHG emission factors for load shifting: A case study on electrified steam generation," Applied Energy, Elsevier, vol. 348(C).
    19. Bardwell, Louise & Blackhall, Lachlan & Shaw, Marnie, 2023. "Emissions and prices are anticorrelated in Australia’s electricity grid, undermining the potential of energy storage to support decarbonisation," Energy Policy, Elsevier, vol. 173(C).
    20. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2023. "From prosumer to flexumer: Case study on the value of flexibility in decarbonizing the multi-energy system of a manufacturing company," Papers 2301.07997, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.