IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.17379.html
   My bibliography  Save this paper

Advanced Models for Hourly Marginal CO2 Emission Factor Estimation: A Synergy between Fundamental and Statistical Approaches

Author

Listed:
  • Souhir Ben Amor
  • Smaranda Sgarciu
  • Taimyra BatzLineiro
  • Felix Muesgens

Abstract

Global warming is caused by increasing concentrations of greenhouse gases, particularly carbon dioxide (CO2). A metric used to quantify the change in CO2 emissions is the marginal emission factor, defined as the marginal change in CO2 emissions resulting from a marginal change in electricity demand over a specified period. This paper aims to present two methodologies to estimate the marginal emission factor in a decarbonized electricity system with high temporal resolution. First, we present an energy systems model that incrementally calculates the marginal emission factors. Second, we examine a Markov Switching Dynamic Regression model, a statistical model designed to estimate marginal emission factors faster and use an incremental marginal emission factor as a benchmark to assess its precision. For the German electricity market, we estimate the marginal emissions factor time series historically (2019, 2020) using Agora Energiewende and for the future (2025, 2030, and 2040) using estimated energy system data. The results indicate that the Markov Switching Dynamic Regression model is more accurate in estimating marginal emission factors than the Dynamic Linear Regression models, which are frequently used in the literature. Hence, the Markov Switching Dynamic Regression model is a simpler alternative to the computationally intensive incremental marginal emissions factor, especially when short-term marginal emissions factor estimation is needed. The results of the marginal emission factor estimation are applied to an exemplary low-emission vehicle charging scenario to estimate CO2 savings by shifting the charge hours to those corresponding to the lower marginal emissions factor. By implementing this emission-minimized charging approach, an average reduction of 31% in the marginal emission factor was achieved over the 5 years.

Suggested Citation

  • Souhir Ben Amor & Smaranda Sgarciu & Taimyra BatzLineiro & Felix Muesgens, 2024. "Advanced Models for Hourly Marginal CO2 Emission Factor Estimation: A Synergy between Fundamental and Statistical Approaches," Papers 2412.17379, arXiv.org.
  • Handle: RePEc:arx:papers:2412.17379
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.17379
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasanuzzaman, M. & Rahim, N.A. & Saidur, R. & Kazi, S.N., 2011. "Energy savings and emissions reductions for rewinding and replacement of industrial motor," Energy, Elsevier, vol. 36(1), pages 233-240.
    2. Amir Shahin Kamjou & Carol J. Miller & Mahdi Rouholamini & Caisheng Wang, 2021. "Comparison between Historical and Real-Time Techniques for Estimating Marginal Emissions Attributed to Electricity Generation," Energies, MDPI, vol. 14(17), pages 1-15, August.
    3. Sgarciu, Smaranda & Scholz, Daniel & Müsgens, Felix, 2023. "How CO2 prices accelerate decarbonisation – The case of coal-fired generation in Germany," Energy Policy, Elsevier, vol. 173(C).
    4. Thomas Mobius & Mira Watermeyer & Oliver Grothe & Felix Musgens, 2023. "Enhancing Energy System Models Using Better Load Forecasts," Papers 2302.11017, arXiv.org.
    5. Georgios Galyfianakis & Evagelos Drimbetas & Nikolaos Sariannidis, 2016. "Modeling Energy Prices with a Markov-Switching dynamic regression model: 2005-2015," Bulletin of Applied Economics, Risk Market Journals, vol. 3(1), pages 11-28.
    6. Braeuer, Fritz & Finck, Rafael & McKenna, Russell, 2020. "Comparing empirical and model-based approaches for calculating dynamic grid emission factors: An application to CO₂-minimizing storage dispatch in Germany," Working Paper Series in Production and Energy 44, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    7. Chen, Yiyang & Mamon, Rogemar & Spagnolo, Fabio & Spagnolo, Nicola, 2022. "Renewable energy and economic growth: A Markov-switching approach," Energy, Elsevier, vol. 244(PB).
    8. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2015. "Environmental Benefits from Driving Electric Vehicles?," NBER Working Papers 21291, National Bureau of Economic Research, Inc.
    9. Stephen P. Holland & Erin T. Mansur, 2008. "Is Real-Time Pricing Green? The Environmental Impacts of Electricity Demand Variance," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 550-561, August.
    10. Ramiz Qussous & Nick Harder & Anke Weidlich, 2022. "Understanding Power Market Dynamics by Reflecting Market Interrelations and Flexibility-Oriented Bidding Strategies," Energies, MDPI, vol. 15(2), pages 1-24, January.
    11. Yang, Christopher, 2013. "Fuel electricity and plug-in electric vehicles in a low carbon fuel standard," Energy Policy, Elsevier, vol. 56(C), pages 51-62.
    12. Hawkes, A.D., 2014. "Long-run marginal CO2 emissions factors in national electricity systems," Applied Energy, Elsevier, vol. 125(C), pages 197-205.
    13. Wang, Y. & Wang, C. & Miller, C.J. & McElmurry, S.P. & Miller, S.S. & Rogers, M.M., 2014. "Locational marginal emissions: Analysis of pollutant emission reduction through spatial management of load distribution," Applied Energy, Elsevier, vol. 119(C), pages 141-150.
    14. Rees, M.T. & Wu, J. & Jenkins, N. & Abeysekera, M., 2014. "Carbon constrained design of energy infrastructure for new build schemes," Applied Energy, Elsevier, vol. 113(C), pages 1220-1234.
    15. Beltrami, Filippo & Burlinson, Andrew & Giulietti, Monica & Grossi, Luigi & Rowley, Paul & Wilson, Grant, 2020. "Where did the time (series) go? Estimation of marginal emission factors with autoregressive components," Energy Economics, Elsevier, vol. 91(C).
    16. Johannes Röder & David Beier & Benedikt Meyer & Joris Nettelstroth & Torben Stührmann & Edwin Zondervan, 2020. "Design of Renewable and System-Beneficial District Heating Systems Using a Dynamic Emission Factor for Grid-Sourced Electricity," Energies, MDPI, vol. 13(3), pages 1-22, February.
    17. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
    18. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    19. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries," Energy Policy, Elsevier, vol. 39(2), pages 803-811, February.
    20. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    21. Rosen, Karol & Angeles-Camacho, César & Elvira, Víctor & Guillén-Burguete, Servio Tulio, 2023. "Intra-hour photovoltaic forecasting through a time-varying Markov switching model," Energy, Elsevier, vol. 278(PB).
    22. Hawkes, A.D., 2010. "Estimating marginal CO2 emissions rates for national electricity systems," Energy Policy, Elsevier, vol. 38(10), pages 5977-5987, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling, Chen & Yang, Qing & Wang, Qingrui & Bartocci, Pietro & Jiang, Lei & Xu, Zishuo & Wang, Luyao, 2024. "A comprehensive consumption-based carbon accounting framework for power system towards low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    2. Bigazzi, Alexander, 2019. "Comparison of marginal and average emission factors for passenger transportation modes," Applied Energy, Elsevier, vol. 242(C), pages 1460-1466.
    3. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    4. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2024. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Applied Energy, Elsevier, vol. 371(C).
    5. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    6. Hawkes, A.D., 2014. "Long-run marginal CO2 emissions factors in national electricity systems," Applied Energy, Elsevier, vol. 125(C), pages 197-205.
    7. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).
    8. Beltrami, Filippo & Burlinson, Andrew & Giulietti, Monica & Grossi, Luigi & Rowley, Paul & Wilson, Grant, 2020. "Where did the time (series) go? Estimation of marginal emission factors with autoregressive components," Energy Economics, Elsevier, vol. 91(C).
    9. Nils Seckinger & Peter Radgen, 2021. "Dynamic Prospective Average and Marginal GHG Emission Factors—Scenario-Based Method for the German Power System until 2050," Energies, MDPI, vol. 14(9), pages 1-22, April.
    10. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2023. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Working Paper Series in Production and Energy 69, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    12. Chaparro, Iván & Watts, David & Gil, Esteban, 2017. "Modeling marginal CO2 emissions in hydrothermal systems: Efficient carbon signals for renewables," Applied Energy, Elsevier, vol. 204(C), pages 318-331.
    13. Beltrami, Filippo, 2024. "The impact of hydroelectric storage in Northern Italy’s power market," Energy Policy, Elsevier, vol. 191(C).
    14. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    15. Jinho Bae & Chang-Jin Kim & Dong Kim, 2012. "The evolution of the monetary policy regimes in the U.S," Empirical Economics, Springer, vol. 43(2), pages 617-649, October.
    16. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    17. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    18. Kanas, Angelos, 2008. "On real interest rate dynamics and regime switching," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2089-2098, October.
    19. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.
    20. Timothy Besley & Thiemo Fetzer & Hannes Mueller, 2015. "The Welfare Cost Of Lawlessness: Evidence From Somali Piracy," Journal of the European Economic Association, European Economic Association, vol. 13(2), pages 203-239, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.17379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.