IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v281y2021ics0306261920315014.html
   My bibliography  Save this article

Identification of marginal generation units based on publicly available information

Author

Listed:
  • Hu, Tingli
  • Wang, Caisheng
  • Miller, Carol

Abstract

Identification of marginal generation units is essential to the development of effective demand response (DR) programs and quantification of locational marginal emissions (LMEs). The real-time marginal units, however, are not revealed by the ISOs/RTOs. This paper develops a framework to identify marginal units from the perspective of a market participant. Through the analysis of the relationship between marginal units and locational marginal prices (LMPs), it is impossible to determine the marginal generators based solely on knowledge of the LMPs. In the proposed framework, a simple data driven approach of exclusion is developed using LMPs, masked bid prices with a 4-month delay, and annual data on power generation and fuel consumption; all are publicly available. Using the link between load profiles and marginal units, the identification results based on historical data can be used for marginal unit predictions assuming the dispatch merit order in the prediction case is the same as in the historical case. A simulation study shows that the proposed framework is effective in detecting marginal units when system load levels are relatively high. Two applications, one to trace load changes back to marginal units and the other to calculate locational marginal emissions, are provided to show the practical value of marginal unit identification in power systems.

Suggested Citation

  • Hu, Tingli & Wang, Caisheng & Miller, Carol, 2021. "Identification of marginal generation units based on publicly available information," Applied Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920315014
    DOI: 10.1016/j.apenergy.2020.116073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920315014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Y. & Wang, C. & Miller, C.J. & McElmurry, S.P. & Miller, S.S. & Rogers, M.M., 2014. "Locational marginal emissions: Analysis of pollutant emission reduction through spatial management of load distribution," Applied Energy, Elsevier, vol. 119(C), pages 141-150.
    2. Noel, Lance & Brodie, Joseph F. & Kempton, Willett & Archer, Cristina L. & Budischak, Cory, 2017. "Cost minimization of generation, storage, and new loads, comparing costs with and without externalities," Applied Energy, Elsevier, vol. 189(C), pages 110-121.
    3. Rogers, Michelle M. & Wang, Yang & Wang, Caisheng & McElmurry, Shawn P. & Miller, Carol J., 2013. "Evaluation of a rapid LMP-based approach for calculating marginal unit emissions," Applied Energy, Elsevier, vol. 111(C), pages 812-820.
    4. Fuentes-Cortés, Luis Fabián & Ma, Yan & Ponce-Ortega, Jose María & Ruiz-Mercado, Gerardo & Zavala, Victor M., 2018. "Valuation of water and emissions in energy systems," Applied Energy, Elsevier, vol. 210(C), pages 518-528.
    5. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrianesis, Panagiotis & Biskas, Pandelis & Liberopoulos, George, 2021. "Evaluating the cost of emissions in a pool-based electricity market," Applied Energy, Elsevier, vol. 298(C).
    2. Huo, Yuchong & Bouffard, François & Joós, Géza, 2022. "Integrating learning and explicit model predictive control for unit commitment in microgrids," Applied Energy, Elsevier, vol. 306(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harris, A.R. & Rogers, Michelle Marinich & Miller, Carol J. & McElmurry, Shawn P. & Wang, Caisheng, 2015. "Residential emissions reductions through variable timing of electricity consumption," Applied Energy, Elsevier, vol. 158(C), pages 484-489.
    2. Amir Shahin Kamjou & Carol J. Miller & Mahdi Rouholamini & Caisheng Wang, 2021. "Comparison between Historical and Real-Time Techniques for Estimating Marginal Emissions Attributed to Electricity Generation," Energies, MDPI, vol. 14(17), pages 1-15, August.
    3. Bigazzi, Alexander, 2019. "Comparison of marginal and average emission factors for passenger transportation modes," Applied Energy, Elsevier, vol. 242(C), pages 1460-1466.
    4. Chaparro, Iván & Watts, David & Gil, Esteban, 2017. "Modeling marginal CO2 emissions in hydrothermal systems: Efficient carbon signals for renewables," Applied Energy, Elsevier, vol. 204(C), pages 318-331.
    5. Chandra Ade Irawan & Dylan Jones, 2019. "Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities," Annals of Operations Research, Springer, vol. 272(1), pages 41-67, January.
    6. Ma, Yuanchi & Liu, Yongqian & Bai, Xinjian & Guo, Yuanjun & Yang, Zhile & Wang, Liyuan & Tao, Tao & Zhang, Lidong, 2024. "DivideMerge: A multi-vessel optimization approach for cooperative operation and maintenance scheduling in offshore wind farm," Renewable Energy, Elsevier, vol. 229(C).
    7. Stock-Williams, Clym & Swamy, Siddharth Krishna, 2019. "Automated daily maintenance planning for offshore wind farms," Renewable Energy, Elsevier, vol. 133(C), pages 1393-1403.
    8. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    9. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    10. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    11. Butera, Giacomo & Jensen, Søren Højgaard & Clausen, Lasse Røngaard, 2019. "A novel system for large-scale storage of electricity as synthetic natural gas using reversible pressurized solid oxide cells," Energy, Elsevier, vol. 166(C), pages 738-754.
    12. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Alabi, Oluwafisayo & Turner, Karen & Figus, Gioele & Katris, Antonios & Calvillo, Christian, 2020. "Can spending to upgrade electricity networks to support electric vehicles (EVs) roll-outs unlock value in the wider economy?," Energy Policy, Elsevier, vol. 138(C).
    14. Rafael Dawid & David McMillan & Matthew Revie, 2018. "Decision Support Tool for Offshore Wind Farm Vessel Routing under Uncertainty," Energies, MDPI, vol. 11(9), pages 1-17, August.
    15. Zhang, Chen & Yang, Tao, 2021. "Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ," Renewable Energy, Elsevier, vol. 164(C), pages 1540-1549.
    16. Heydarzadeh, Zahra & Mac Kinnon, Michael & Thai, Clinton & Reed, Jeff & Brouwer, Jack, 2020. "Marginal methane emission estimation from the natural gas system," Applied Energy, Elsevier, vol. 277(C).
    17. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    18. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    19. Rasmus Dovnborg Frederiksen & Grzegorz Bocewicz & Grzegorz Radzki & Zbigniew Banaszak & Peter Nielsen, 2024. "Cost-Effectiveness of Predictive Maintenance for Offshore Wind Farms: A Case Study," Energies, MDPI, vol. 17(13), pages 1-24, June.
    20. Yürüşen, Nurseda Y. & Rowley, Paul N. & Watson, Simon J. & Melero, Julio J., 2020. "Automated wind turbine maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:281:y:2021:i:c:s0306261920315014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.