IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v191y2024ics030142152400212x.html
   My bibliography  Save this article

The impact of hydroelectric storage in Northern Italy’s power market

Author

Listed:
  • Beltrami, Filippo

Abstract

The literature highlights ambiguity in the effect of storage from hydroelectric power production over the levels of carbon emissions. This paper examines the external benefit related to charge and discharge operations of hydroelectric storage power plants, applied to the case of the Northern area of the Italian wholesale electricity market. The OLS estimations based on data for year 2018 indicate that storage generation reduces carbon emissions in aggregate terms, being the estimated storage marginal emission factor (MEF) equal to 0.13 tCO2/MWh. This finding is largely explained by the value of the MEF during off-peak hours (0.17 tCO2/MWh), thus showing effectiveness of storage in the displacement of the carbon-intensive baseload generation acting on the margin during night-hours. However, the calculation of the MEF for peak-demand hours indicates that storage generation, individually taken, is not able to affect the structure of marginal generation in the considered area. Finally, the use of a simulation approach indicates that pumped hydroelectric storage (PHS) contributed to reduce carbon emissions into the atmosphere by 471 ktCO2. The obtained result is consistent with the typical coefficient of round-trip efficiency of PHS documented in the literature, which amounts to 74%.

Suggested Citation

  • Beltrami, Filippo, 2024. "The impact of hydroelectric storage in Northern Italy’s power market," Energy Policy, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:enepol:v:191:y:2024:i:c:s030142152400212x
    DOI: 10.1016/j.enpol.2024.114192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152400212X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chi Kong Chyong, Bowei Guo, and David Newbery, 2020. "The Impact of a Carbon Tax on the CO2 Emissions Reduction of Wind," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    2. Rangoni, Bernardo, 2012. "A contribution on electricity storage: The case of hydro-pumped storage appraisal and commissioning in Italy and Spain," Utilities Policy, Elsevier, vol. 23(C), pages 31-39.
    3. Graf, Christoph & Marcantonini, Claudio, 2017. "Renewable energy and its impact on thermal generation," Energy Economics, Elsevier, vol. 66(C), pages 421-430.
    4. Bardwell, Louise & Blackhall, Lachlan & Shaw, Marnie, 2023. "Emissions and prices are anticorrelated in Australia’s electricity grid, undermining the potential of energy storage to support decarbonisation," Energy Policy, Elsevier, vol. 173(C).
    5. Linn, Joshua & Shih, Jhih-Shyang, 2019. "Do lower electricity storage costs reduce greenhouse gas emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 130-158.
    6. Jan Abrell & Mirjam Kosch, 2022. "The Impact of Carbon Prices on Renewable Energy Support," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(3), pages 531-563.
    7. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.
    8. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik R., 2020. "Towards a solar-hydro based generation: The case of Switzerland," Energy Policy, Elsevier, vol. 138(C).
    9. Faddy Ardian & Silvia Concettini & Anna Creti, 2018. "Renewable Generation and Network Congestion: An Empirical Analysis of the Italian Power Market," The Energy Journal, , vol. 39(2_suppl), pages 3-40, December.
    10. Anna Cretì & Fulvio Fontini, 2019. "Economics of Electricity. Markets, Competition and Rules," Post-Print hal-02304345, HAL.
    11. Abrell, Jan & Kosch, Mirjam, 2022. "Cross-country spillovers of renewable energy promotion—The case of Germany," Resource and Energy Economics, Elsevier, vol. 68(C).
    12. Chi Kong Chyong & Bowei Guo & David Newbery, 2020. "The Impact of a Carbon Tax on the CO2 Emissions Reduction of Wind," The Energy Journal, , vol. 41(1), pages 1-32, January.
    13. Hawkes, A.D., 2014. "Long-run marginal CO2 emissions factors in national electricity systems," Applied Energy, Elsevier, vol. 125(C), pages 197-205.
    14. Beltrami, Filippo & Burlinson, Andrew & Giulietti, Monica & Grossi, Luigi & Rowley, Paul & Wilson, Grant, 2020. "Where did the time (series) go? Estimation of marginal emission factors with autoregressive components," Energy Economics, Elsevier, vol. 91(C).
    15. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    16. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    17. I. A. Grant Wilson & Iain Staffell, 2018. "Rapid fuel switching from coal to natural gas through effective carbon pricing," Nature Energy, Nature, vol. 3(5), pages 365-372, May.
    18. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    19. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    20. Wolf-Peter Schill & Claudia Kemfert, 2011. "Modeling Strategic Electricity Storage: The Case of Pumped Hydro Storage in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-88.
    21. Sapio, Alessandro, 2015. "The effects of renewables in space and time: A regime switching model of the Italian power price," Energy Policy, Elsevier, vol. 85(C), pages 487-499.
    22. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    23. Faddy Ardian & Silvia Concettini & Anna Creti, 2018. "Renewable Generation and Network Congestion: An Empirical Analysis of the Italian Power Market," Post-Print hal-02315332, HAL.
    24. Bo Tranberg & Olivier Corradi & Bruno Lajoie & Thomas Gibon & Iain Staffell & Gorm Bruun Andresen, 2018. "Real-Time Carbon Accounting Method for the European Electricity Markets," Papers 1812.06679, arXiv.org, revised May 2019.
    25. Christoph Graf & Federico Quaglia & Frank A. Wolak, 2020. "Simplified Electricity Market Models with Significant Intermittent Renewable Capacity: Evidence from Italy," NBER Working Papers 27262, National Bureau of Economic Research, Inc.
    26. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).
    27. Dimanchev, Emil G. & Hodge, Joshua L. & Parsons, John E., 2021. "The role of hydropower reservoirs in deep decarbonization policy," Energy Policy, Elsevier, vol. 155(C).
    28. Staffell, Iain, 2017. "Measuring the progress and impacts of decarbonising British electricity," Energy Policy, Elsevier, vol. 102(C), pages 463-475.
    29. Carson, Richard T. & Novan, Kevin, 2013. "The private and social economics of bulk electricity storage," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 404-423.
    30. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    31. Espinosa, María Paz & Pizarro-Irizar, Cristina, 2018. "Is renewable energy a cost-effective mitigation resource? An application to the Spanish electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 902-914.
    32. Newbery, David, 2018. "Shifting demand and supply over time and space to manage intermittent generation: The economics of electrical storage," Energy Policy, Elsevier, vol. 113(C), pages 711-720.
    33. Holladay, J. Scott & LaRiviere, Jacob, 2017. "The impact of cheap natural gas on marginal emissions from electricity generation and implications for energy policy," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 205-227.
    34. Rita Garcia & Fausto Freire, 2016. "Marginal Life-Cycle Greenhouse Gas Emissions of Electricity Generation in Portugal and Implications for Electric Vehicles," Resources, MDPI, vol. 5(4), pages 1-15, November.
    35. Barbour, Edward & Wilson, I.A. Grant & Radcliffe, Jonathan & Ding, Yulong & Li, Yongliang, 2016. "A review of pumped hydro energy storage development in significant international electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 421-432.
    36. Oliveira, Tiago & Varum, Celeste & Botelho, Anabela, 2019. "Econometric modeling of CO2 emissions abatement: Comparing alternative approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 310-322.
    37. Marcantonini, Claudio & Valero, Vanessa, 2017. "Renewable energy and CO2 abatement in Italy," Energy Policy, Elsevier, vol. 106(C), pages 600-613.
    38. Liebensteiner, Mario & Haxhimusa, Adhurim & Naumann, Fabian, 2023. "Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    39. Bigerna, Simona & Bollino, Carlo Andrea & Ciferri, Davide & Polinori, Paolo, 2017. "Renewables diffusion and contagion effect in Italian regional electricity markets: Assessment and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 199-211.
    40. Beltrami, Filippo & Fontini, Fulvio & Grossi, Luigi, 2021. "The value of carbon emission reduction induced by Renewable Energy Sources in the Italian power market," Ecological Economics, Elsevier, vol. 189(C).
    41. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    42. Mastropietro, Paolo & Fontini, Fulvio & Rodilla, Pablo & Batlle, Carlos, 2018. "The Italian capacity remuneration mechanism: Critical review and open questions," Energy Policy, Elsevier, vol. 123(C), pages 659-669.
    43. Hawkes, A.D., 2010. "Estimating marginal CO2 emissions rates for national electricity systems," Energy Policy, Elsevier, vol. 38(10), pages 5977-5987, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beltrami, Filippo & Fontini, Fulvio & Grossi, Luigi, 2021. "The value of carbon emission reduction induced by Renewable Energy Sources in the Italian power market," Ecological Economics, Elsevier, vol. 189(C).
    2. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    3. Beltrami, Filippo & Burlinson, Andrew & Giulietti, Monica & Grossi, Luigi & Rowley, Paul & Wilson, Grant, 2020. "Where did the time (series) go? Estimation of marginal emission factors with autoregressive components," Energy Economics, Elsevier, vol. 91(C).
    4. Ortega-Izquierdo, Margarita & Río, Pablo del, 2020. "An analysis of the socioeconomic and environmental benefits of wind energy deployment in Europe," Renewable Energy, Elsevier, vol. 160(C), pages 1067-1080.
    5. Mauro Lafratta & Matthew Leach & Rex B. Thorpe & Mark Willcocks & Eve Germain & Sabeha K. Ouki & Achame Shana & Jacquetta Lee, 2021. "Economic and Carbon Costs of Electricity Balancing Services: The Need for Secure Flexible Low-Carbon Generation," Energies, MDPI, vol. 14(16), pages 1-21, August.
    6. Pimm, Andrew J. & Palczewski, Jan & Barbour, Edward R. & Cockerill, Tim T., 2021. "Using electricity storage to reduce greenhouse gas emissions," Applied Energy, Elsevier, vol. 282(PA).
    7. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    8. Graf, Christoph & Marcantonini, Claudio, 2017. "Renewable energy and its impact on thermal generation," Energy Economics, Elsevier, vol. 66(C), pages 421-430.
    9. Linn, Joshua & Shih, Jhih-Shyang, 2019. "Do lower electricity storage costs reduce greenhouse gas emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 130-158.
    10. Romano, E. & Mutschler, R. & Hollmuller, P. & Sulzer, M. & Orehounig, K. & Rüdisüli, M., 2024. "Spatial carbon and price spillovers among EU countries on their pathway toward net-zero electricity supply," Energy Economics, Elsevier, vol. 131(C).
    11. Antweiler, Werner & Muesgens, Felix, 2024. "The new merit order: The viability of energy-only electricity markets with only intermittent renewable energy sources and grid-scale storage," Ruhr Economic Papers 1064, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    12. Marques, António Cardoso & Junqueira, Thibaut Manuel, 2022. "European energy transition: Decomposing the performance of nuclear power," Energy, Elsevier, vol. 245(C).
    13. Fianu, Emmanuel Senyo & Ahelegbey, Daniel Felix & Grossi, Luigi, 2022. "Modeling risk contagion in the Italian zonal electricity market," European Journal of Operational Research, Elsevier, vol. 298(2), pages 656-679.
    14. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    15. Leroutier, Marion, 2022. "Carbon pricing and power sector decarbonization: Evidence from the UK," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    16. Gianfreda, Angelica & Parisio, Lucia & Pelagatti, Matteo, 2018. "A review of balancing costs in Italy before and after RES introduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 549-563.
    17. Concettini, Silvia & Creti, Anna & Gualdi, Stanislao, 2022. "Assessing the regional redistributive effect of renewable power production through a spot market algorithm simulator: The case of Italy," Energy Economics, Elsevier, vol. 114(C).
    18. Li, Mo & Yang, Yi & Smith, Timothy M. & Wilson, Elizabeth J., 2020. "Wind can reduce storage-induced emissions at grid scales," Applied Energy, Elsevier, vol. 276(C).
    19. Sapio, Alessandro & Spagnolo, Nicola, 2020. "The effect of a new power cable on energy prices volatility spillovers," Energy Policy, Elsevier, vol. 144(C).
    20. De Siano, Rita & Sapio, Alessandro, 2022. "Spatial merit order effects of renewables in the Italian power exchange," Energy Economics, Elsevier, vol. 108(C).

    More about this item

    Keywords

    CO2 emissions; Electricity market; Renewable energy sources; Storage;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:191:y:2024:i:c:s030142152400212x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.