IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124004222.html
   My bibliography  Save this article

Comprehensive analysis of carbon emission reduction technologies (CRTs) in China's coal-fired power sector: A bottom-up approach

Author

Listed:
  • Wang, Xutao
  • Zhao, Xinxu
  • Yang, Yang
  • Shao, Yuhao
  • Zhang, Li
  • Ni, Yu
  • Pan, Jun
  • Zhang, Yongxin
  • Zheng, Chenghang
  • Gao, Xiang

Abstract

Carbon dioxide (CO2) reduction technologies (CRTs) in the coal-fired power sector play an imperative role in the mitigation of environmental challenges and reducing CO2 emissions to help achieve the 2 °C target. However, a compelling necessity persists for a unified framework that can effectively and accurately estimate the costs and potentials associated with CRTs, arising from the diversity of technologies and unit types. Therefore, this study employs a bottom-up approach to analyze the costs and potential of 25 advanced CRTs in the coal-fired power sector, excluding CO2 capture, utilization and storage (CCUS), across 19 types of coal-fired power units. This analysis amalgamates the CO2 reduction supply curve (CRSC) approach with levelized cost of CO2 reduction (LCOC) and a broken-even analysis which could reflect the sector's average carbon reduction cost. The outcomes reveal the following key insights: (1) These technologies collectively harbor a substantial CO2 conservation potential amounting to 925.61 Mt CO2, with a broken-even price of CNY 410.1/tCO2. This reduction could potentially lower 20%–25 % of CO2 emissions in China's power system in 2022, highlighting the crucial role of CRTs in achieving a low-carbon transition and national climate targets; (2)Steam turbine flow path retrofit (T8) not only offers a relatively high CO2 reduction potential (>60 Mt CO2), but also features a low cost (CNY 0.85/MWh). Prioritizing the development of this technology can significantly accelerate the low-carbon transition of coal power; (3) Carbon price have a paramount influence on the cost-effectiveness of CRTs and driving their adoption.

Suggested Citation

  • Wang, Xutao & Zhao, Xinxu & Yang, Yang & Shao, Yuhao & Zhang, Li & Ni, Yu & Pan, Jun & Zhang, Yongxin & Zheng, Chenghang & Gao, Xiang, 2024. "Comprehensive analysis of carbon emission reduction technologies (CRTs) in China's coal-fired power sector: A bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004222
    DOI: 10.1016/j.rser.2024.114696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.