IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924019305.html
   My bibliography  Save this article

The future of coal-fired power plants in China to retrofit with biomass and CCS: A plant-centered assessment framework considering land competition

Author

Listed:
  • Sun, Yunqi
  • Deng, An
  • Yang, Qing
  • Wang, Qingrui
  • Zhou, Hewen
  • Lu, Xi
  • Meng, Wenchuan
  • Yang, Zaiming
  • Yang, Haiping
  • Chen, Hanping

Abstract

Retrofitting as biomass and coal co-firing power plants with carbon capture and storage (BCP-CCS) is essential in the decarbonization of coal-fired power plants (CFPPs) for China that plays a crucial role in achieving carbon neutrality globally. Many studies have conducted a purpose-oriented analysis to explore the retrofit-potential for BCP-CCS, ignoring the actual competition among CFPPs for availability of biomass residues and access to carbon sequestration sites. Thus, from the perspective of individual CFPPs, it's still uncertain how BCP-CCS retrofit will influence the incremental cost and carbon emission reduction. This study proposes a ternary-matched coupling of “biomass residues-CFPPs-sequestration sites” at plant scale, analyzing available biomass and carbon-sequestration resources around each CFPP separately and carrying out cost-benefit assessments. Results suggest that the net carbon emissions of all CFPPs become neutral at 30 km without biomass shortages, indicating BCP-CCS has the potential to assist China's coal-fired power sector reach carbon-neutrality. But for negative emission target, it is suggested that within biomass-collection radii of 30 km, 13 % of CFPPs can't achieve co-firing ratios above 10 %. Achieving the full retrofit potential of all CFPPs will inevitably face biomass resource competition and demand energy crops as supplementary fuel. It's also found that only 16 provinces possess sufficient marginal lands to grow energy crops. The incremental levelized cost of electricity (LCOE) of each CFPP is highly collected with surrounding biomass and carbon sequestration resources, the highest of which reach above 450 CNY/MWh in the southernmost regions lacking both. A delayed retrofit time could help decrease the incremental LCOE but damage the carbon reductions greatly. Also, the critical carbon price needs to be 400–500 CNY/t to help balance the retrofit cost for 70 % CFPPs at various co-firing ratios. This study highlighted the importance of availability for biomass resources and implemented a high-resolution assessment of BCP-CCS deployment at plant-level, which could provide a detailed guidance for the present and future decarbonization of CFPPs in China.

Suggested Citation

  • Sun, Yunqi & Deng, An & Yang, Qing & Wang, Qingrui & Zhou, Hewen & Lu, Xi & Meng, Wenchuan & Yang, Zaiming & Yang, Haiping & Chen, Hanping, 2025. "The future of coal-fired power plants in China to retrofit with biomass and CCS: A plant-centered assessment framework considering land competition," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019305
    DOI: 10.1016/j.apenergy.2024.124547
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Xiaofan Xing & Rong Wang & Nico Bauer & Philippe Ciais & Junji Cao & Jianmin Chen & Xu Tang & Lin Wang & Xin Yang & Olivier Boucher & Daniel Goll & Josep Peñuelas & Ivan A. Janssens & Yves Balkanski &, 2021. "Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Daniel L. Sanchez & James H. Nelson & Josiah Johnston & Ana Mileva & Daniel M. Kammen, 2015. "Biomass enables the transition to a carbon-negative power system across western North America," Nature Climate Change, Nature, vol. 5(3), pages 230-234, March.
    4. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    5. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Chakraborty, Abhishek & Biswal, Anima & Pandey, Varun & Shadab, Syed & Kalyandeep, K. & Murthy, C.S. & Seshasai, M.V.R. & Rao, P.V.N. & Jain, Niveta & Sehgal, V.K. & Kaushik, Nirmala & Singh, Sanjay &, 2022. "Developing a spatial information system of biomass potential from crop residues over India: A decision support for planning and establishment of biofuel/biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    8. Joeri Rogelj & Piers M. Forster & Elmar Kriegler & Christopher J. Smith & Roland Séférian, 2019. "Estimating and tracking the remaining carbon budget for stringent climate targets," Nature, Nature, vol. 571(7765), pages 335-342, July.
    9. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    10. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    11. Bhave, Amit & Taylor, Richard H.S. & Fennell, Paul & Livingston, William R. & Shah, Nilay & Dowell, Niall Mac & Dennis, John & Kraft, Markus & Pourkashanian, Mohammed & Insa, Mathieu & Jones, Jenny & , 2017. "Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets," Applied Energy, Elsevier, vol. 190(C), pages 481-489.
    12. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    13. Ricci, Olivia & Selosse, Sandrine, 2013. "Global and regional potential for bioelectricity with carbon capture and storage," Energy Policy, Elsevier, vol. 52(C), pages 689-698.
    14. Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.
    15. Daniel L. Sanchez & Daniel M. Kammen, 2016. "A commercialization strategy for carbon-negative energy," Nature Energy, Nature, vol. 1(1), pages 1-4, January.
    16. Asbjørn Torvanger, 2019. "Governance of bioenergy with carbon capture and storage (BECCS): accounting, rewarding, and the Paris agreement," Climate Policy, Taylor & Francis Journals, vol. 19(3), pages 329-341, March.
    17. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    2. Zhou, Wenlong & Fan, Wenrong & Lan, Rujia & Su, Wenlong & Fan, Jing-Li, 2025. "Retrofitted CCS technologies enhance economy, security, and equity in achieving carbon zero in power sector," Applied Energy, Elsevier, vol. 378(PA).
    3. Wu, Zitao & Zhai, Haibo, 2021. "Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration," Applied Energy, Elsevier, vol. 303(C).
    4. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    5. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    6. Ma, Chunyan & Wang, Nan & Chen, Yifeng & Khokarale, Santosh Govind & Bui, Thai Q. & Weiland, Fredrik & Lestander, Torbjörn A. & Rudolfsson, Magnus & Mikkola, Jyri-Pekka & Ji, Xiaoyan, 2020. "Towards negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous pentaethylenehexamine," Applied Energy, Elsevier, vol. 279(C).
    7. Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
    8. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    9. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    10. Rui Wang & Wenjia Cai & Ryna Yiyun Cui & Lin Huang & Weidong Ma & Binbin Qi & Jia Zhang & Jiang Bian & Haoran Li & Shihui Zhang & Jianxiang Shen & Xian Zhang & Jiutian Zhang & Wei Li & Le Yu & Ning Zh, 2025. "Reducing transition costs towards carbon neutrality of China’s coal power plants," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Huang, Qian & Feng, Qing, 2024. "Bi-level multi-objective optimization for a hybrid carbon pricing initiative towards biomass co-firing with coal," Renewable Energy, Elsevier, vol. 237(PD).
    12. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    13. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Negri, Valentina & Galán-Martín, Ángel & Pozo, Carlos & Fajardy, Mathilde & Reiner, David M. & Mac Dowell, Niall & Guillén-Gosálbez, Gonzalo, 2021. "Life cycle optimization of BECCS supply chains in the European Union," Applied Energy, Elsevier, vol. 298(C).
    15. López, R. & Menéndez, M. & Fernández, C. & Bernardo-Sánchez, A., 2018. "The effects of scale-up and coal-biomass blending on supercritical coal oxy-combustion power plants," Energy, Elsevier, vol. 148(C), pages 571-584.
    16. Saharudin, Djasmine Mastisya & Jeswani, Harish Kumar & Azapagic, Adisa, 2023. "Bioenergy with carbon capture and storage (BECSS): Life cycle environmental and economic assessment of electricity generated from palm oil wastes," Applied Energy, Elsevier, vol. 349(C).
    17. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    18. Zhao, Guanhan & Jiang, Peng & Zhang, Hao & Li, Lin & Ji, Tuo & Mu, Liwen & Lu, Xiaohua & Zhu, Jiahua, 2024. "Mapping out the regional low-carbon and economic biomass supply chain by aligning geographic information systems and life cycle assessment models," Applied Energy, Elsevier, vol. 369(C).
    19. Jagu Schippers, Emma & Massol, Olivier, 2022. "Unlocking CO2 infrastructure deployment: The impact of carbon removal accounting," Energy Policy, Elsevier, vol. 171(C).
    20. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.