IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v620y2023i7972d10.1038_s41586-023-06187-1.html
   My bibliography  Save this article

The carbon costs of global wood harvests

Author

Listed:
  • Liqing Peng

    (World Resources Institute)

  • Timothy D. Searchinger

    (World Resources Institute
    Princeton University)

  • Jessica Zionts

    (World Resources Institute)

  • Richard Waite

    (World Resources Institute)

Abstract

After agriculture, wood harvest is the human activity that has most reduced the storage of carbon in vegetation and soils1,2. Although felled wood releases carbon to the atmosphere in various steps, the fact that growing trees absorb carbon has led to different carbon-accounting approaches for wood use, producing widely varying estimates of carbon costs. Many approaches give the impression of low, zero or even negative greenhouse gas emissions from wood harvests because, in different ways, they offset carbon losses from new harvests with carbon sequestration from growth of broad forest areas3,4. Attributing this sequestration to new harvests is inappropriate because this other forest growth would occur regardless of new harvests and typically results from agricultural abandonment, recovery from previous harvests and climate change itself. Nevertheless some papers count gross emissions annually, which assigns no value to the capacity of newly harvested forests to regrow and approach the carbon stocks of unharvested forests. Here we present results of a new model that uses time discounting to estimate the present and future carbon costs of global wood harvests under different scenarios. We find that forest harvests between 2010 and 2050 will probably have annualized carbon costs of 3.5–4.2 Gt CO2e yr−1, which approach common estimates of annual emissions from land-use change due to agricultural expansion. Our study suggests an underappreciated option to address climate change by reducing these costs.

Suggested Citation

  • Liqing Peng & Timothy D. Searchinger & Jessica Zionts & Richard Waite, 2023. "The carbon costs of global wood harvests," Nature, Nature, vol. 620(7972), pages 110-115, August.
  • Handle: RePEc:nat:nature:v:620:y:2023:i:7972:d:10.1038_s41586-023-06187-1
    DOI: 10.1038/s41586-023-06187-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06187-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06187-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rusanen, Katri & Hujala, Teppo & Pykäläinen, Jouni, 2024. "Research approaches to sustainable forest-based value creation: A literature review," Forest Policy and Economics, Elsevier, vol. 163(C).
    2. Francesco Arfelli & Cristian Tosi & Luca Ciacci & Fabrizio Passarini, 2024. "Life Cycle Assessment of a Wood Biomass Gasification Plant and Implications for Syngas and Biochar Utilization," Energies, MDPI, vol. 17(11), pages 1-15, May.
    3. Ono, Ryoga & Delage, Rémi & Nakata, Toshihiko, 2024. "A bottom-up estimation of woody biomass energy potential including forest growth in Japan," Renewable Energy, Elsevier, vol. 229(C).
    4. Wang, Xutao & Zhao, Xinxu & Yang, Yang & Shao, Yuhao & Zhang, Li & Ni, Yu & Pan, Jun & Zhang, Yongxin & Zheng, Chenghang & Gao, Xiang, 2024. "Comprehensive analysis of carbon emission reduction technologies (CRTs) in China's coal-fired power sector: A bottom-up approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:620:y:2023:i:7972:d:10.1038_s41586-023-06187-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.