IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v13y2024i12p164-d1529019.html
   My bibliography  Save this article

Food Waste to Food Security: Transition from Bioresources to Sustainability

Author

Listed:
  • Prakash Kumar Sarangi

    (College of Agriculture, Central Agricultural University, Imphal 795004, India)

  • Priti Pal

    (Environmental Engineering, Shri Ramswaroop Memorial College of Engineering & Management, Tewariganj, Faizabad Road, Lucknow 226028, India)

  • Akhilesh Kumar Singh

    (Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, India)

  • Uttam Kumar Sahoo

    (Department of Forestry, Mizoram University, Aizawl 796004, India)

  • Piotr Prus

    (Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland)

Abstract

The transition from food waste to food security is a critical component of sustainability efforts. This approach focuses on repurposing organic waste products generated throughout the food supply chain into valuable resources. Food waste, encompassing everything from agricultural residues to post-consumer waste, represents a significant untapped potential that can be harnessed to enhance food security. By implementing strategies such as composting, bioconversion, and innovative recycling technologies, biowastes can be transformed into fertilizers, animal feed, and even new food products, thus closing the loop in the food system and aiding sustainable solutions for waste valorization. This transition not only addresses environmental concerns by reducing landfill waste and greenhouse gas emissions but also contributes to economic sustainability by creating new opportunities within the food production and waste management sectors. Ultimately, transforming food waste into a resource aligns with the broader goals of a circular economy, ensuring a sustainable, resilient, and food-secure future.

Suggested Citation

  • Prakash Kumar Sarangi & Priti Pal & Akhilesh Kumar Singh & Uttam Kumar Sahoo & Piotr Prus, 2024. "Food Waste to Food Security: Transition from Bioresources to Sustainability," Resources, MDPI, vol. 13(12), pages 1-24, November.
  • Handle: RePEc:gam:jresou:v:13:y:2024:i:12:p:164-:d:1529019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/13/12/164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/13/12/164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rebolledo-Leiva, Ricardo & Moreira, María Teresa & González-García, Sara, 2023. "Progress of social assessment in the framework of bioeconomy under a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Lucía Andreu-Coll & Marina Cano-Lamadrid & Leontina Lipan & David López-Lluch & Esther Sendra & Francisca Hernández, 2023. "Effects of Organic Farming on the Physicochemical, Functional, and Quality Properties of Pomegranate Fruit: A Review," Agriculture, MDPI, vol. 13(6), pages 1-13, May.
    3. Wen-Tien Tsai, 2020. "Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan," Resources, MDPI, vol. 9(5), pages 1-11, April.
    4. Pomi Shahbaz & Shamsheer ul Haq & Azhar Abbas & Abdus Samie & Ismet Boz & Salim Bagadeem & Ziyue Yu & Zhihui Li, 2022. "Food, Energy, and Water Nexus at Household Level: Do Sustainable Household Consumption Practices Promote Cleaner Environment?," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    5. Yaashikaa, P.R. & Kumar, P. Senthil, 2022. "Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review," MPRA Paper 112234, University Library of Munich, Germany.
    6. Marinos Stylianou & Iliana Papamichael & Irene Voukkali & Michail Tsangas & Michalis Omirou & Ioannis M. Ioannides & Antonis A. Zorpas, 2023. "LCA of Barley Production: A Case Study from Cyprus," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    7. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.
    8. Akhilesh Kumar Singh & Priti Pal & Saurabh Singh Rathore & Uttam Kumar Sahoo & Prakash Kumar Sarangi & Piotr Prus & Paweł Dziekański, 2023. "Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements," Energies, MDPI, vol. 16(14), pages 1-22, July.
    9. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Ma, Yingqun & Cai, Weiwei & Liu, Yu, 2017. "An integrated engineering system for maximizing bioenergy production from food waste," Applied Energy, Elsevier, vol. 206(C), pages 83-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florentios Economou & Irene Voukkali & Iliana Papamichael & Valentina Phinikettou & Pantelitsa Loizia & Vincenzo Naddeo & Paolo Sospiro & Marco Ciro Liscio & Christos Zoumides & Diana Mihaela Țîrcă & , 2024. "Turning Food Loss and Food Waste into Watts: A Review of Food Waste as an Energy Source," Energies, MDPI, vol. 17(13), pages 1-30, June.
    2. Latika Bhatia & Harit Jha & Tanushree Sarkar & Prakash Kumar Sarangi, 2023. "Food Waste Utilization for Reducing Carbon Footprints towards Sustainable and Cleaner Environment: A Review," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    3. Hassan El-Ramady & Eric C. Brevik & Yousry Bayoumi & Tarek A. Shalaby & Mohammed E. El-Mahrouk & Naglaa Taha & Heba Elbasiouny & Fathy Elbehiry & Megahed Amer & Neama Abdalla & József Prokisch & Svein, 2022. "An Overview of Agro-Waste Management in Light of the Water-Energy-Waste Nexus," Sustainability, MDPI, vol. 14(23), pages 1-30, November.
    4. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    5. Sun-Ju Lee & Min-Ah Oh & Seung-Jin Oh & Na-Hyeon Cho & Young-Yeul Kang & Jai-Young Lee, 2022. "Effects of Bioliquid Recirculation on Hydrothermal Carbonization of Lignocellulosic Biomass," Energies, MDPI, vol. 15(13), pages 1-10, July.
    6. Kyriakou, Maria & Patsalou, Maria & Xiaris, Nikolas & Tsevis, Athanasios & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2020. "Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery," Renewable Energy, Elsevier, vol. 155(C), pages 53-64.
    7. Aniruddha Sarker & Mithun Kumar Ghosh & Tofazzal Islam & Muhammad Bilal & Rakhi Nandi & Md Lamiur Raihan & Mohammad Nabil Hossain & Juwel Rana & Subrato Kumar Barman & Jang-Eok Kim, 2022. "Sustainable Food Waste Recycling for the Circular Economy in Developing Countries, with Special Reference to Bangladesh," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    8. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    9. Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).
    10. Joanna Szulc & Błażej Błaszak & Anna Wenda-Piesik & Grażyna Gozdecka & Ewa Żary-Sikorska & Małgorzata Bąk & Justyna Bauza-Kaszewska, 2023. "Zero Waste Technology of Soybeans Processing," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    11. Krystian Krochmalny & Halina Pawlak-Kruczek & Norbert Skoczylas & Mateusz Kudasik & Aleksandra Gajda & Renata Gnatowska & Monika Serafin-Tkaczuk & Tomasz Czapka & Amit K. Jaiswal & Vishwajeet & Amit A, 2022. "Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon," Energies, MDPI, vol. 15(12), pages 1-11, June.
    12. Liu, Yueling & Feng, Kai & Li, Huan, 2019. "Rapid conversion from food waste to electricity by combining anaerobic fermentation and liquid catalytic fuel cell," Applied Energy, Elsevier, vol. 233, pages 395-402.
    13. Can Cui & Cancan Yan & Ailin Wang & Cui Chen & Dan Chen & Shiwei Liu & Lu Li & Qiong Wu & Yue Liu & Yuxiang Liu & Genkuo Nie & Xiaoqing Jiang & Shuangxi Nie & Shuangquan Yao & Hailong Yu, 2023. "Understanding the Inhibition Mechanism of Lignin Adsorption to Cellulase in Terms of Changes in Composition and Conformation of Free Enzymes," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    14. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    15. Eliana Fernández Fortunato & Fernando Jiménez-Sáez & Eloy Hontoria, 2023. "Can Industry Counteract the Ecological Crisis? An Approach for the Development of a New Circular Bioeconomic Model Based on Biocomposite Materials," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    16. Felipe Romero-Perdomo & Miguel Ángel González-Curbelo, 2023. "Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    17. Cai, Chenggu & Wang, Zhanbiao & Ma, Lei & Xu, Zhaoxian & Yu, Jianming & Li, Fuguang, 2024. "Cotton stalk valorization towards bio-based materials, chemicals, and biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    18. Urbanowska, Agnieszka & Niedzwiecki, Lukasz & Wnukowski, Mateusz & Aragon-Briceño, Christian & Kabsch-Korbutowicz, Małgorzata & Baranowski, Marcin & Czerep, Michał & Seruga, Przemysław & Pawlak-Krucze, 2023. "Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent," Energy, Elsevier, vol. 284(C).
    19. Sara Marcelino & Samia Hamdane & Pedro D. Gaspar & Arminda Paço, 2023. "Sustainable Agricultural Practices for the Production of Medicinal and Aromatic Plants: Evidence and Recommendations," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    20. Diógenes Hernández & Fernando Pinilla & Ricardo Rebolledo-Leiva & Joaquín Aburto-Hole & Joaquín Díaz & Guillermo Quijano & Sara González-García & Claudio Tenreiro, 2024. "Anaerobic Co-Digestion of Agro-Industrial Waste Mixtures for Biogas Production: An Energetically Sustainable Solution," Sustainability, MDPI, vol. 16(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:13:y:2024:i:12:p:164-:d:1529019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.