IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124002466.html
   My bibliography  Save this article

Integration of proton exchange membrane fuel cell with air gap membrane distillation for sustainable electricity and freshwater cogeneration: Performance, influential mechanism, multi-objective optimization and future perspective

Author

Listed:
  • Zhu, Huichao
  • Zhang, Houcheng

Abstract

Proton exchange membrane fuel cell (PEMFC) converts vast majority of hydrogen energy into waste heat, resulting in energy wasting, membrane drying and even lifetime shortening. Herein, air gap membrane distillation is proposed to immediately remove and harness the waste heat from PEMFC for additional freshwater production. By quantifying the irreversible thermodynamic and electrochemical losses, mathematical formulas for the water production, power generation and overall efficiency are derived to evaluate the system performance. After a rigorous model validation, the performance feature, feasibility and competitiveness of the proposed system are examined. The integration system achieves a peak power density 23.69 % higher than that of a single PEMFC at 353 K, with a corresponding increase in exergy efficiency by 3.61 %. In addition, the influential mechanisms of the PEMFC operating conditions, air gap thickness, coolant temperature, and properties of the proton exchange membrane and hydrophobic porous membrane are investigated to discern potential avenues for further performance improvement. The gradient-based local sensitivity analyses further determine the optimal parameter regulation strategies for different output targets. The economic study indicates that the levelized costs of water and electricity over the total lifecycle are 21.53 $ m−3 and 0.061 $ kWh−1, respectively. The multi-objective optimization, integrating genetic algorithm and the technique for order preference by similarity to an ideal solution, maximizes the exergy efficiency and output power density while minimizing the initial investment cost per unit area, with values of 42.84 %, 0.975 W cm−2, and 27.33 $ cm−2, respectively.

Suggested Citation

  • Zhu, Huichao & Zhang, Houcheng, 2024. "Integration of proton exchange membrane fuel cell with air gap membrane distillation for sustainable electricity and freshwater cogeneration: Performance, influential mechanism, multi-objective optimi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002466
    DOI: 10.1016/j.rser.2024.114523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124002466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lan, Yuncheng & Lu, Junhui & Mu, Lianbo & Wang, Suilin & Zhai, Huixing, 2023. "Waste heat recovery from exhausted gas of a proton exchange membrane fuel cell to produce hydrogen using thermoelectric generator," Applied Energy, Elsevier, vol. 334(C).
    2. Ying Da Wang & Quentin Meyer & Kunning Tang & James E. McClure & Robin T. White & Stephen T. Kelly & Matthew M. Crawford & Francesco Iacoviello & Dan J. L. Brett & Paul R. Shearing & Peyman Mostaghimi, 2023. "Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Pan, Xianyou & Yuan, Ge & Wu, Xianhua & Xie, Pinjie, 2023. "The effects of government subsidies on the economic profits of hydrogen energy enterprises – An analysis based on A-share listed enterprises in China," Renewable Energy, Elsevier, vol. 211(C), pages 445-451.
    4. Yang, Puqing & Zhang, Houcheng, 2015. "Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system," Energy, Elsevier, vol. 85(C), pages 458-467.
    5. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    6. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "A hybrid system using direct contact membrane distillation for water production to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 147(C), pages 578-586.
    7. Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Ghaffour, N. & Soukane, S. & Lee, J.-G. & Kim, Y. & Alpatova, A., 2019. "Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review," Applied Energy, Elsevier, vol. 254(C).
    9. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    10. Elminshawy, Nabil A.S. & Gadalla, Mamdouh A. & Bassyouni, M. & El-Nahhas, Kamal & Elminshawy, Ahmed & Elhenawy, Y., 2020. "A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water," Renewable Energy, Elsevier, vol. 162(C), pages 802-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Wanchao & Han, Jitian & Ge, Yi & Yang, Jinwen & Liang, Wenxing, 2024. "Multi-criteria optimization of a combined power and freshwater system using modified NSGA-II and AHP-entropy-topsis," Renewable Energy, Elsevier, vol. 227(C).
    2. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    3. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Zhu, Huichao & Xiao, Liusheng & Kuang, Min & Wang, Jiatang & Zhang, Houcheng, 2024. "Innovative use of air gap membrane distillation to harvest waste heat from alkaline fuel cell for efficient freshwater production: A comprehensive 4E study," Renewable Energy, Elsevier, vol. 225(C).
    5. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    6. Juan Pablo Santana & Carlos I. Rivera-Solorio & Jia Wei Chew & Yong Zen Tan & Miguel Gijón-Rivera & Iván Acosta-Pazmiño, 2023. "Performance Assessment of Coupled Concentrated Photovoltaic-Thermal and Vacuum Membrane Distillation (CPVT-VMD) System for Water Desalination," Energies, MDPI, vol. 16(3), pages 1-21, February.
    7. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    8. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    9. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Yu, Zhibin & Chen, Jianyong & Chen, Ying, 2024. "Multi-objective optimization of proton exchange membrane fuel cell based methanol-solar-to-X hybrid energy systems," Applied Energy, Elsevier, vol. 373(C).
    10. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Portilla-Paveri, Manuel & Cariaga, Denise & Negrete-Pincetic, Matías & Lorca, Álvaro & Anjos, Miguel F., 2024. "A long-term generation and transmission expansion planning model considering desalination flexibility and coordination: A Chilean case study," Applied Energy, Elsevier, vol. 371(C).
    12. Poddar, V.S. & Ranawade, V.A. & Dhokey, N.B., 2022. "Study of synergy between photovoltaic, thermoelectric and direct evaporative cooling system for improved performance," Renewable Energy, Elsevier, vol. 182(C), pages 817-826.
    13. Youmin Hou & Prexa Shah & Vassilios Constantoudis & Evangelos Gogolides & Michael Kappl & Hans-Jürgen Butt, 2023. "A super liquid-repellent hierarchical porous membrane for enhanced membrane distillation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Hamed Farahani & Mostafa Haghighi & Mohammad Mahdi Behvand Usefi & Mostafa Ghasemi, 2024. "Overview of Sustainable Water Treatment Using Microbial Fuel Cells and Microbial Desalination Cells," Sustainability, MDPI, vol. 16(23), pages 1-27, November.
    15. Zhao, Qin & Li, Pengcheng & Zhang, Houcheng, 2024. "Dually boosting the performance of photovoltaic module via integrating elastocaloric cooler," Energy, Elsevier, vol. 295(C).
    16. Wang, Mingli & Ruan, Jiafen & Zhang, Jian & Jiang, Yefan & Gao, Fei & Zhang, Xin & Rahman, Ehsanur & Guo, Juncheng, 2024. "Modeling, thermodynamic performance analysis, and parameter optimization of a hybrid power generation system coupling thermogalvanic cells with alkaline fuel cells," Energy, Elsevier, vol. 292(C).
    17. Pingkuo Liu & Jiahao Wu, 2023. "Game Analysis on Energy Enterprises’ Digital Transformation—Strategic Simulation for Guiding Role, Leading Role and Following Role," Sustainability, MDPI, vol. 15(13), pages 1-33, June.
    18. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    19. Žiga Ahčin & Parham Kabirifar & Luka Porenta & Miha Brojan & Jaka Tušek, 2022. "Numerical Modeling of Shell-and-Tube-like Elastocaloric Regenerator," Energies, MDPI, vol. 15(23), pages 1-28, December.
    20. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.