IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i23p10458-d1532369.html
   My bibliography  Save this article

Overview of Sustainable Water Treatment Using Microbial Fuel Cells and Microbial Desalination Cells

Author

Listed:
  • Hamed Farahani

    (Department of Chemical Engineering, University of Qom, Qom 3716146611, Iran)

  • Mostafa Haghighi

    (Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran)

  • Mohammad Mahdi Behvand Usefi

    (Department of Chemical Engineering, University of Kashan, Kashan 8731753153, Iran)

  • Mostafa Ghasemi

    (Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar 311, Oman)

Abstract

Global water scarcity and pollution are among the most severe challenges, affecting the lives of over 2.2 billion people and leading to a projected water demand that will exceed supply by 40% by 2030. Even though reverse osmosis and thermal desalination are commonly adopted water governance solutions, with energy consumption rates reaching up to 10 kWh/cubic meter of water, they remain economically unfeasible for most countries. Therefore, with rapid population growth and industrialization, high operation costs further limit the adoption of the traditional water treatment technologies. However, microbial fuel cells (MFCs) and microbial desalination cells (MDCs) are an innovative solution due to their ability to treat wastewater, desalinate water, and generate bioelectricity simultaneously. The recent advancements in MFCs have enabled the achievement of over 3 W/m 2 of power density, while desalination efficiencies in MDCs have surpassed 63%, reducing total energy consumption by more than 40% when compared to traditional methods. The innovative use of electrode materials, like graphene and carbon nanotubes, has led to a 40% faster electron transfer rate, further increasing the efficiency of energy recovery. Moreover, the innovative integration of artificial intelligence (AI) and machine learning (ML) optimized MFCs and MFC operations, leading to a cost reduction of up to 20% through the real-time monitoring of PMDCs. The main challenges, such as the high capital costs and membrane fouling, were also considered, with the system scalability being the recurring concern. Thus, the current reports suggest that MFCs and MDCs would reduce wastewater treatment costs by 30% if applied on a large scale in the future.

Suggested Citation

  • Hamed Farahani & Mostafa Haghighi & Mohammad Mahdi Behvand Usefi & Mostafa Ghasemi, 2024. "Overview of Sustainable Water Treatment Using Microbial Fuel Cells and Microbial Desalination Cells," Sustainability, MDPI, vol. 16(23), pages 1-27, November.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10458-:d:1532369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/23/10458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/23/10458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamed Farahani & Mostafa Ghasemi & Mehdi Sedighi & Nitin Raut, 2024. "Employing Artificial Intelligence for Enhanced Microbial Fuel Cell Performance through Wolf Vitamin Solution Optimization," Sustainability, MDPI, vol. 16(15), pages 1-17, July.
    2. Mark A. Shannon & Paul W. Bohn & Menachem Elimelech & John G. Georgiadis & Benito J. Mariñas & Anne M. Mayes, 2008. "Science and technology for water purification in the coming decades," Nature, Nature, vol. 452(7185), pages 301-310, March.
    3. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).
    4. Sami G. A. Flimban & Iqbal M. I. Ismail & Taeyoung Kim & Sang-Eun Oh, 2019. "Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability," Energies, MDPI, vol. 12(17), pages 1-20, September.
    5. Santoro, Carlo & Abad, Fernando Benito & Serov, Alexey & Kodali, Mounika & Howe, Kerry J. & Soavi, Francesca & Atanassov, Plamen, 2017. "Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content," Applied Energy, Elsevier, vol. 208(C), pages 25-36.
    6. Divya Priya, A. & Deva, Sharon & Shalini, P. & Pydi Setty, Y., 2020. "Antimony-tin based intermetallics supported on reduced graphene oxide as anode and MnO2@rGO as cathode electrode for the study of microbial fuel cell performance," Renewable Energy, Elsevier, vol. 150(C), pages 156-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mashhadikhan, Samaneh & Ahmadi, Reyhane & Ebadi Amooghin, Abtin & Sanaeepur, Hamidreza & Aminabhavi, Tejraj M. & Rezakazemi, Mashallah, 2024. "Breaking temperature barrier: Highly thermally heat resistant polymeric membranes for sustainable water and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    3. Jayanthi Velayudhan & Sangeetha Subramanian, 2023. "Development of Manganese-Coated Graphite Electrode in a Dual-Chambered Fuel Cell for Selenite Removal and Bio-Electricity Generation from Wastewater Effluent by Bacillus cereus," Energies, MDPI, vol. 16(6), pages 1-15, March.
    4. Portilla-Paveri, Manuel & Cariaga, Denise & Negrete-Pincetic, Matías & Lorca, Álvaro & Anjos, Miguel F., 2024. "A long-term generation and transmission expansion planning model considering desalination flexibility and coordination: A Chilean case study," Applied Energy, Elsevier, vol. 371(C).
    5. Barbara Włodarczyk & Paweł P. Włodarczyk, 2020. "The Membrane-Less Microbial Fuel Cell (ML-MFC) with Ni-Co and Cu-B Cathode Powered by the Process Wastewater from Yeast Production," Energies, MDPI, vol. 13(15), pages 1-13, August.
    6. Hu, Xiaoyi & Tan, Xinru & Shi, Xiaomin & Liu, Wenjun & Ouyang, Tiancheng, 2023. "An integrated assessment of microfluidic microbial fuel cell subjected to vibration excitation," Applied Energy, Elsevier, vol. 336(C).
    7. Guo, Qijing & Yi, Hao & Jia, Feifei & Song, Shaoxian, 2022. "Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators," Renewable Energy, Elsevier, vol. 194(C), pages 68-79.
    8. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    9. Andreas N. Angelakis & Mohammad Valipour & Abdelkader T. Ahmed & Vasileios Tzanakakis & Nikolaos V. Paranychianakis & Jens Krasilnikoff & Renato Drusiani & Larry Mays & Fatma El Gohary & Demetris Kout, 2021. "Water Conflicts: From Ancient to Modern Times and in the Future," Sustainability, MDPI, vol. 13(8), pages 1-31, April.
    10. Dhanu Radha Samayamanthula & Badriyah Alhalaili & Harinath Yapati & Adnan Akber & Chidambaram Sabarathinam, 2022. "Innovative Bacterial Removal Technique Using Green Synthetic Nano Curcumin Zinc (II) Complex for Sustainable Water Resource Management," Sustainability, MDPI, vol. 14(7), pages 1-17, April.
    11. Van Geluwe, Steven & Braeken, Leen & Robberecht, Thomas & Jans, Maarten & Creemers, Claude & Van der Bruggen, Bart, 2011. "Evaluation of electrodialysis for scaling prevention of nanofiltration membranes at high water recoveries," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 34-42.
    12. N. Evelin Paucar & Chikashi Sato, 2022. "Coupling Microbial Fuel Cell and Hydroponic System for Electricity Generation, Organic Removal, and Nutrient Recovery via Plant Production from Wastewater," Energies, MDPI, vol. 15(23), pages 1-19, December.
    13. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    14. Wilberforce, Tabbi & Abdelkareem, Mohammad Ali & Elsaid, Khaled & Olabi, A.G. & Sayed, Enas Taha, 2022. "Role of carbon-based nanomaterials in improving the performance of microbial fuel cells," Energy, Elsevier, vol. 240(C).
    15. Martín Alfredo Legarreta-González & César A. Meza-Herrera & Rafael Rodríguez-Martínez & Darithsa Loya-González & Carlos Servando Chávez-Tiznado & Viridiana Contreras-Villarreal & Francisco Gerardo Vél, 2024. "Selecting a Time-Series Model to Predict Drinking Water Extraction in a Semi-Arid Region in Chihuahua, Mexico," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
    16. Erez Braude & Shmuel Hauser & Zilla Sinuany-Stern & Gideon Oron, 2015. "Water Allocation Between the Agricultural and the Municipal Sectors Under Scarcity: A Financial Approach Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3481-3501, August.
    17. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    18. Schäfer, Andrea I. & Hughes, Gordon & Richards, Bryce S., 2014. "Renewable energy powered membrane technology: A leapfrog approach to rural water treatment in developing countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 542-556.
    19. Asiah Sukri & Raihan Othman & Firdaus Abd-Wahab & Noraini M. Noor, 2021. "Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste," Energies, MDPI, vol. 14(8), pages 1-11, April.
    20. Joern Falk & Björn Globisch & Martin Angelmahr & Wolfgang Schade & Heike Schenk-Mathes, 2022. "Drinking Water Supply in Rural Africa Based on a Mini-Grid Energy System—A Socio-Economic Case Study for Rural Development," Sustainability, MDPI, vol. 14(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:23:p:10458-:d:1532369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.