IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35973-8.html
   My bibliography  Save this article

Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning

Author

Listed:
  • Ying Da Wang

    (University of New South Wales)

  • Quentin Meyer

    (University of New South Wales)

  • Kunning Tang

    (University of New South Wales)

  • James E. McClure

    (Virginia Tech)

  • Robin T. White

    (Carl Zeiss X-ray Microscopy, ZEISS Innovation Center California)

  • Stephen T. Kelly

    (Carl Zeiss X-ray Microscopy, ZEISS Innovation Center California)

  • Matthew M. Crawford

    (Fuel Cell Store)

  • Francesco Iacoviello

    (University College London)

  • Dan J. L. Brett

    (University College London)

  • Paul R. Shearing

    (University College London)

  • Peyman Mostaghimi

    (University of New South Wales)

  • Chuan Zhao

    (University of New South Wales)

  • Ryan T. Armstrong

    (University of New South Wales)

Abstract

Proton exchange membrane fuel cells, consuming hydrogen and oxygen to generate clean electricity and water, suffer acute liquid water challenges. Accurate liquid water modelling is inherently challenging due to the multi-phase, multi-component, reactive dynamics within multi-scale, multi-layered porous media. In addition, currently inadequate imaging and modelling capabilities are limiting simulations to small areas (

Suggested Citation

  • Ying Da Wang & Quentin Meyer & Kunning Tang & James E. McClure & Robin T. White & Stephen T. Kelly & Matthew M. Crawford & Francesco Iacoviello & Dan J. L. Brett & Paul R. Shearing & Peyman Mostaghimi, 2023. "Large-scale physically accurate modelling of real proton exchange membrane fuel cell with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35973-8
    DOI: 10.1038/s41467-023-35973-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35973-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35973-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuekun Lu & Antonio Bertei & Donal P. Finegan & Chun Tan & Sohrab R. Daemi & Julia S. Weaving & Kieran B. O’Regan & Thomas M. M. Heenan & Gareth Hinds & Emma Kendrick & Dan J. L. Brett & Paul R. Shear, 2020. "3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Liu, Jiawen & Shin, Seungho & Um, Sukkee, 2019. "Comprehensive statistical analysis of heterogeneous transport characteristics in multifunctional porous gas diffusion layers using lattice Boltzmann method for fuel cell applications," Renewable Energy, Elsevier, vol. 139(C), pages 279-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhongyong & Sun, Yuning & Tang, Xiawei & Mao, Lei, 2024. "Enabling unsupervised fault diagnosis of proton exchange membrane fuel cell stack: Knowledge transfer from single-cell to stack," Applied Energy, Elsevier, vol. 360(C).
    2. Zhu, Huichao & Zhang, Houcheng, 2024. "Integration of proton exchange membrane fuel cell with air gap membrane distillation for sustainable electricity and freshwater cogeneration: Performance, influential mechanism, multi-objective optimi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Zhu, Huichao & Xiao, Liusheng & Kuang, Min & Wang, Jiatang & Zhang, Houcheng, 2024. "Innovative use of air gap membrane distillation to harvest waste heat from alkaline fuel cell for efficient freshwater production: A comprehensive 4E study," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Akbar, Ali & Um, Sukkee, 2022. "Influence of external clamping pressure on nanoscopic mechanical deformation and catalyst utilization of quaternion PtC catalyst layers for PEMFCs," Renewable Energy, Elsevier, vol. 194(C), pages 195-210.
    3. Rodríguez-Iturriaga, Pablo & Anseán, David & Rodríguez-Bolívar, Salvador & García, Víctor Manuel & González, Manuela & López-Villanueva, Juan Antonio, 2024. "Modeling current-rate effects in lithium-ion batteries based on a distributed, multi-particle equivalent circuit model," Applied Energy, Elsevier, vol. 353(PA).
    4. Akbar, Ali & Liu, Jiawen & Chung, Sung-Jae & Um, Sukkee, 2021. "Statistical characterization of non-linear microscopic mechanical deformation through randomly oriented fibrous porous transport layers for advanced electrochemical energy systems," Renewable Energy, Elsevier, vol. 178(C), pages 1106-1118.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35973-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.