IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123010031.html
   My bibliography  Save this article

Risk assessment for onshore wind projects in Canada

Author

Listed:
  • Mohamed, Emad
  • Seresht, Nima Gerami
  • Jafari, Parinaz
  • AbouRizk, Simaan

Abstract

The construction phase of onshore wind farm projects involves different types of risks that hinder their development. This study aims to identify and assess risk factors that affect the construction of onshore wind farm projects and rank them based on their severity as assessed from the Canadian perspective. Thirty risk factors were collected through an extensive literature review. Then, experts were asked to subjectively evaluate the probability and impact of each factor on project cost, time, quality, and safety. The fuzzy technique for order of preference by similarity to ideal solution (fuzzy TOPSIS) and the fuzzy analytic hierarchy process (fuzzy AHP) were used to rank these risk factors based on their severity. The closeness coefficient (CC) indicated that a lack of management expertise, a shortage of resources required for project delivery, adverse weather, material damage during construction, and failure to keep up with recent innovative technology are the most severe risks affecting onshore wind farm projects in Canada with CC values of 0.9710, 0.9642, 0.9635, 0.9575, and 0.9450, respectively. The findings of this study support the decision making of investors and contractors who work in the Canadian wind energy industry by highlighting the critical risk factors. Moreover, this study is beneficial for decision makers in other jurisdictions since a review and a list of risk factors that affect the construction of onshore wind projects are provided herein.

Suggested Citation

  • Mohamed, Emad & Seresht, Nima Gerami & Jafari, Parinaz & AbouRizk, Simaan, 2024. "Risk assessment for onshore wind projects in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010031
    DOI: 10.1016/j.rser.2023.114145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chan, Felix T.S. & Kumar, Niraj, 2007. "Global supplier development considering risk factors using fuzzy extended AHP-based approach," Omega, Elsevier, vol. 35(4), pages 417-431, August.
    2. Zhou, Shan & Yang, Pu, 2020. "Risk management in distributed wind energy implementing Analytic Hierarchy Process," Renewable Energy, Elsevier, vol. 150(C), pages 616-623.
    3. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    4. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    5. Xu, Yelin & Chan, Albert P.C. & Xia, Bo & Qian, Queena K. & Liu, Yong & Peng, Yi, 2015. "Critical risk factors affecting the implementation of PPP waste-to-energy projects in China," Applied Energy, Elsevier, vol. 158(C), pages 403-411.
    6. Jannie Sønderkær Nielsen & John Dalsgaard Sørensen, 2014. "Methods for Risk-Based Planning of O&M of Wind Turbines," Energies, MDPI, vol. 7(10), pages 1-20, October.
    7. Patrick Zou & Jie Li, 2010. "Risk identification and assessment in subway projects: case study of Nanjing Subway Line 2," Construction Management and Economics, Taylor & Francis Journals, vol. 28(12), pages 1219-1238.
    8. Sadoullah Ebrahimnejad & S. Meysam Mousavi & S. Mohammad H. Mojtahedi, 2009. "A fuzzy decision-making model for risk ranking with an application to an onshore gas refinery," International Journal of Business Continuity and Risk Management, Inderscience Enterprises Ltd, vol. 1(1), pages 38-66.
    9. Montes, Germán Martínez & Martín, Enrique Prados, 2007. "Profitability of wind energy: Short-term risk factors and possible improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2191-2200, December.
    10. Ho, Lip-Wah, 2016. "Wind energy in Malaysia: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 279-295.
    11. Saidur, R. & Islam, M.R. & Rahim, N.A. & Solangi, K.H., 2010. "A review on global wind energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1744-1762, September.
    12. Huiru Zhao & Sen Guo, 2014. "Selecting Green Supplier of Thermal Power Equipment by Using a Hybrid MCDM Method for Sustainability," Sustainability, MDPI, vol. 6(1), pages 1-19, January.
    13. Kucukali, Serhat, 2016. "Risk scorecard concept in wind energy projects: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 975-987.
    14. Shou Qing Wang & Mohammed Fadhil Dulaimi & Muhammad Yousuf Aguria, 2004. "Risk management framework for construction projects in developing countries," Construction Management and Economics, Taylor & Francis Journals, vol. 22(3), pages 237-252.
    15. Fera, M. & Iannone, R. & Macchiaroli, R. & Miranda, S. & Schiraldi, M.M., 2014. "Project appraisal for small and medium size wind energy installation: The Italian wind energy policy effects," Energy Policy, Elsevier, vol. 74(C), pages 621-631.
    16. Francis Adams, 2006. "Expert elicitation and Bayesian analysis of construction contract risks: an investigation," Construction Management and Economics, Taylor & Francis Journals, vol. 24(1), pages 81-96.
    17. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    18. Akintola Akintoye, 2000. "Analysis of factors influencing project cost estimating practice," Construction Management and Economics, Taylor & Francis Journals, vol. 18(1), pages 77-89.
    19. Nacef Tazi & Eric Châtelet & Youcef Bouzidi, 2017. "Using a Hybrid Cost-FMEA Analysis for Wind Turbine Reliability Analysis," Energies, MDPI, vol. 10(3), pages 1-20, February.
    20. Gatzert, Nadine & Kosub, Thomas, 2016. "Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 982-998.
    21. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    22. Watson, Simon & Moro, Alberto & Reis, Vera & Baniotopoulos, Charalampos & Barth, Stephan & Bartoli, Gianni & Bauer, Florian & Boelman, Elisa & Bosse, Dennis & Cherubini, Antonello & Croce, Alessandro , 2019. "Future emerging technologies in the wind power sector: A European perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forouli, Aikaterini & Gkonis, Nikolaos & Nikas, Alexandros & Siskos, Eleftherios & Doukas, Haris & Tourkolias, Christos, 2019. "Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets," Energy, Elsevier, vol. 170(C), pages 818-831.
    2. Xiaoyan Jiang & Kun Lu & Bo Xia & Yong Liu & Caiyun Cui, 2019. "Identifying Significant Risks and Analyzing Risk Relationship for Construction PPP Projects in China Using Integrated FISM-MICMAC Approach," Sustainability, MDPI, vol. 11(19), pages 1-31, September.
    3. Diógenes, Jamil Ramsi Farkat & Claro, João & Rodrigues, José Coelho, 2019. "Barriers to onshore wind farm implementation in Brazil," Energy Policy, Elsevier, vol. 128(C), pages 253-266.
    4. Cai, Yanpeng & Cai, Jianying & Xu, Linyu & Tan, Qian & Xu, Qiao, 2019. "Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 125-137.
    5. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    6. Marcin Rabe & Dalia Streimikiene & Yuriy Bilan, 2019. "The Concept of Risk and Possibilities of Application of Mathematical Methods in Supporting Decision Making for Sustainable Energy Development," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    7. Wang, Xiaojun & Chan, Hing Kai & Li, Dong, 2015. "A case study of an integrated fuzzy methodology for green product development," European Journal of Operational Research, Elsevier, vol. 241(1), pages 212-223.
    8. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    9. Albara M. Mustafa & Abbas Barabadi, 2022. "Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions," Energies, MDPI, vol. 15(4), pages 1-17, February.
    10. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    11. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    12. Wendong Jiang, 2024. "Key Selection Factors Influencing Animation Films from the Perspective of the Audience," Mathematics, MDPI, vol. 12(10), pages 1-21, May.
    13. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    14. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    15. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    16. Ping-Lung Huang & Bruce C.Y. Lee & Chen-Song Wang & Chi-Te Sun, 2017. "Relative Importance of the Factors under the ISO-10015 Quality Management Guidelines that Influence the Service Quality of Certification Bodies," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 13(1), pages 105-137, February.
    17. Yen-Cheng Chen & Tung-Han Yu & Pei-Ling Tsui & Ching-Sung Lee, 2014. "A fuzzy AHP approach to construct international hotel spa atmosphere evaluation model," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(2), pages 645-657, March.
    18. Wei-Ming Wang & Hsiao-Han Peng, 2020. "A Fuzzy Multi-Criteria Evaluation Framework for Urban Sustainable Development," Mathematics, MDPI, vol. 8(3), pages 1-22, March.
    19. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    20. Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2022. "Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.