Pipe-work optimization of water flow window
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.02.078
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xamán, J. & Olazo-Gómez, Y. & Chávez, Y. & Hinojosa, J.F. & Hernández-Pérez, I. & Hernández-López, I. & Zavala-Guillén, I., 2016. "Computational fluid dynamics for thermal evaluation of a room with a double glazing window with a solar control film," Renewable Energy, Elsevier, vol. 94(C), pages 237-250.
- Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, P.S., 2017. "CFD and experimental investigation of flat plate solar water heating system under steady state condition," Renewable Energy, Elsevier, vol. 106(C), pages 24-36.
- Manz, Heinrich, 2008. "On minimizing heat transport in architectural glazing," Renewable Energy, Elsevier, vol. 33(1), pages 119-128.
- Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
- Arıcı, Müslüm & Kan, Miraç, 2015. "An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling," Renewable Energy, Elsevier, vol. 75(C), pages 249-256.
- Aboulnaga, Mohsen M., 2006. "Towards green buildings: Glass as a building element—the use and misuse in the gulf region," Renewable Energy, Elsevier, vol. 31(5), pages 631-653.
- Claros-Marfil, Luis J. & Padial, J. Francisco & Lauret, Benito, 2016. "A new and inexpensive open source data acquisition and controller for solar research: Application to a water-flow glazing," Renewable Energy, Elsevier, vol. 92(C), pages 450-461.
- Manz, Heinrich & Menti, Urs-Peter, 2012. "Energy performance of glazings in European climates," Renewable Energy, Elsevier, vol. 37(1), pages 226-232.
- Lee, J.W. & Jung, H.J. & Park, J.Y. & Lee, J.B. & Yoon, Y., 2013. "Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements," Renewable Energy, Elsevier, vol. 50(C), pages 522-531.
- Gil-Lopez, Tomas & Gimenez-Molina, Carmen, 2013. "Environmental, economic and energy analysis of double glazing with a circulating water chamber in residential buildings," Applied Energy, Elsevier, vol. 101(C), pages 572-581.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Sihui & Lyu, Yuanli & Li, Chunying & Li, Xueyang & Yang, Wei & Wang, Ting, 2024. "Liquid flow glazing contributes to energy-efficient buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Xu, Bin & Gan, Wen-tao & Wang, Yang-liang & Chen, Xing-ni & Fei, Yue & Pei, Gang, 2023. "Thermal performance of a novel Trombe wall integrated with direct absorption solar collector based on phase change slurry in winter," Renewable Energy, Elsevier, vol. 213(C), pages 246-258.
- Gutai, Matyas & Mok, Brandon & Cavana, Giulio & Kheybari, Abolfazl Ganji, 2024. "Global carbon viability of glass technologies: Life-cycle assessment of standard, advanced and water-filled glass (WFG) building envelopes," Applied Energy, Elsevier, vol. 367(C).
- Chan, Lok Shun, 2023. "Numerical study on the thermal performance of water flow window fed with air-conditioning condensate," Energy, Elsevier, vol. 263(PB).
- Yuanli Lyu & Sihui Chen & Can Liu & Jun Li & Chunying Li & Hua Su, 2022. "Thermal Characteristics Simulation of an Energy-Conserving Facade: Water Flow Window," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
- Liu, Wenjie & Chow, Tin-tai, 2021. "Performance analysis of liquid-flow-window with submerged heat exchanger," Renewable Energy, Elsevier, vol. 168(C), pages 319-331.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
- Sadooghi, Parham & Kherani, Nazir P., 2019. "Influence of slat angle and low-emissive partitioning radiant energy veils on the thermal performance of multilayered windows for dynamic facades," Renewable Energy, Elsevier, vol. 143(C), pages 142-148.
- Lee, J.W. & Jung, H.J. & Park, J.Y. & Lee, J.B. & Yoon, Y., 2013. "Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements," Renewable Energy, Elsevier, vol. 50(C), pages 522-531.
- Borys Basok & Borys Davydenko & Volodymyr Novikov & Anatoliy M. Pavlenko & Maryna Novitska & Karolina Sadko & Svitlana Goncharuk, 2022. "Evaluation of Heat Transfer Rates through Transparent Dividing Structures," Energies, MDPI, vol. 15(13), pages 1-16, July.
- Pu, Jin Huan & Yu, Xiyu & Zhao, Yuewen & Tang, G.H. & Ren, Xingjie & Du, Mu, 2023. "Dynamic aerogel window with switchable solar transmittance and low haze," Energy, Elsevier, vol. 285(C).
- Chen, Sihui & Lyu, Yuanli & Li, Chunying & Li, Xueyang & Yang, Wei & Wang, Ting, 2024. "Liquid flow glazing contributes to energy-efficient buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2018. "Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing," Applied Energy, Elsevier, vol. 228(C), pages 1591-1600.
- Rodriguez-Ake, A. & Xamán, J. & Hernández-López, I. & Sauceda, D. & Carranza-Chávez, Francisco J. & Zavala-Guillén, I., 2022. "Numerical study and thermal evaluation of a triple glass window under Mexican warm climate conditions," Energy, Elsevier, vol. 239(PB).
- Liu, Wenjie & Chow, Tin-tai, 2021. "Performance analysis of liquid-flow-window with submerged heat exchanger," Renewable Energy, Elsevier, vol. 168(C), pages 319-331.
- Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
- Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
- Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
- Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
- Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
- Ma, Ruihua & Ma, Dongyan & Ma, Ruijiang & Long, Enshen, 2022. "Theoretical and experimental analysis of temperature variation of V–Ti black ceramic solar collector," Renewable Energy, Elsevier, vol. 194(C), pages 1153-1162.
- Jaesung Park & Myunghwan Oh & Chul-sung Lee, 2019. "Thermal Performance Optimization and Experimental Evaluation of Vacuum-Glazed Windows Manufactured via the In-Vacuum Method," Energies, MDPI, vol. 12(19), pages 1-19, September.
- Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
- Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
- Anna Bać & Magdalena Nemś & Artur Nemś & Jacek Kasperski, 2019. "Sustainable Integration of a Solar Heating System into a Single-Family House in the Climate of Central Europe—A Case Study," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
- Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
More about this item
Keywords
Water flow window; Distribution header; Connecting-pipe; Thermal performance; Water circulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:136-146. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.