IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4860-d611211.html
   My bibliography  Save this article

Quantification of the Flexibility of Residential Prosumers

Author

Listed:
  • István G. Balázs

    (Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem str. 10., H-8200 Veszprém, Hungary)

  • Attila Fodor

    (Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem str. 10., H-8200 Veszprém, Hungary)

  • Attila Magyar

    (Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem str. 10., H-8200 Veszprém, Hungary)

Abstract

Balancing in a distributed generation network is an increasingly difficult task because of the increasing number of residential prosumers on the power network. This paper proposes a framework for the estimation, as well as the prediction of the power flexibility of residential prosumers. In order to quantify the residential buildings’ demand flexibility, a thermoelectric simulation model of a typical residential house was developed based on first engineering principles. Based on the calculated flexibility values, a simple prediction method was used to give a short-term forecast of the prosumer flexibility. The results were validated by simulation experiments incorporating real data for four different scenarios.

Suggested Citation

  • István G. Balázs & Attila Fodor & Attila Magyar, 2021. "Quantification of the Flexibility of Residential Prosumers," Energies, MDPI, vol. 14(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4860-:d:611211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4860/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4860/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    2. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    3. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    4. Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
    5. Castagneto Gissey, Giorgio & Subkhankulova, Dina & Dodds, Paul E. & Barrett, Mark, 2019. "Value of energy storage aggregation to the electricity system," Energy Policy, Elsevier, vol. 128(C), pages 685-696.
    6. Hopper, Nicole & Goldman, Charles & Neenan, Bernie, 2006. "Demand Response from Day-Ahead Hourly Pricing for Large Customers," The Electricity Journal, Elsevier, vol. 19(3), pages 52-63, April.
    7. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    8. Kubli, Merla & Canzi, Patrizio, 2021. "Business strategies for flexibility aggregators to steer clear of being “too small to bid”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Takeshita, Takuma & Aki, Hirohisa & Kawajiri, Kotaro & Ishida, Masayoshi, 2021. "Assessment of utilization of combined heat and power systems to provide grid flexibility alongside variable renewable energy systems," Energy, Elsevier, vol. 214(C).
    10. Piotr F. Borowski, 2020. "Zonal and Nodal Models of Energy Market in European Union," Energies, MDPI, vol. 13(16), pages 1-21, August.
    11. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    12. Alexandre Lucas & Luca Jansen & Nikoleta Andreadou & Evangelos Kotsakis & Marcelo Masera, 2019. "Load Flexibility Forecast for DR Using Non-Intrusive Load Monitoring in the Residential Sector," Energies, MDPI, vol. 12(14), pages 1-19, July.
    13. Elias Dörre & Sebastian Pfaffel & Alexander Dreher & Pedro Girón & Svenja Heising & Kay Wiedemann, 2021. "Flexibility Reserve of Self-Consumption Optimized Energy Systems in the Household Sector," Energies, MDPI, vol. 14(11), pages 1-20, May.
    14. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    15. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2020. "An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem," Energies, MDPI, vol. 13(16), pages 1-31, August.
    16. Sadeghianpourhamami, N. & Demeester, T. & Benoit, D.F. & Strobbe, M. & Develder, C., 2016. "Modeling and analysis of residential flexibility: Timing of white good usage," Applied Energy, Elsevier, vol. 179(C), pages 790-805.
    17. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    18. Mohammad Shakeri & Jagadeesh Pasupuleti & Nowshad Amin & Md. Rokonuzzaman & Foo Wah Low & Chong Tak Yaw & Nilofar Asim & Nurul Asma Samsudin & Sieh Kiong Tiong & Chong Kok Hen & Chin Wei Lai, 2020. "An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid," Energies, MDPI, vol. 13(13), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    2. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    4. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    5. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    6. Robert Szydło & Sylwia Wiśniewska & Małgorzata Tyrańska & Anna Dolot & Urszula Bukowska & Marek Koczyński, 2021. "Employer Expectations Regarding the Competencies of Employees on the Energy Market in Poland," Energies, MDPI, vol. 14(21), pages 1-21, November.
    7. Zhao Song & Christoph M. Hackl & Abhinav Anand & Andre Thommessen & Jonas Petzschmann & Omar Kamel & Robert Braunbehrens & Anton Kaifel & Christian Roos & Stefan Hauptmann, 2023. "Digital Twins for the Future Power System: An Overview and a Future Perspective," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
    8. Maja Božičević Vrhovčak & Bruno Malbašić, 2023. "Unlocking the Value of Aggregated Demand Response: A Survey of European Electricity Markets," Energies, MDPI, vol. 16(17), pages 1-13, September.
    9. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).
    10. Irene Arcelay & Aitor Goti & Aitor Oyarbide-Zubillaga & Tugce Akyazi & Elisabete Alberdi & Pablo Garcia-Bringas, 2021. "Definition of the Future Skills Needs of Job Profiles in the Renewable Energy Sector," Energies, MDPI, vol. 14(9), pages 1-23, May.
    11. Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Isa Ferrall & Georg Heinemann & Christian von Hirschhausen & Daniel M. Kammen, 2021. "The Role of Political Economy in Energy Access: Public and Private Off-Grid Electrification in Tanzania," Energies, MDPI, vol. 14(11), pages 1-23, May.
    13. Piotr F. Borowski & Barbara Karlikowska, 2023. "Clean Hydrogen Is a Challenge for Enterprises in the Era of Low-Emission and Zero-Emission Economy," Energies, MDPI, vol. 16(3), pages 1-15, January.
    14. Wanapinit, Natapon & Thomsen, Jessica & Kost, Christoph & Weidlich, Anke, 2021. "An MILP model for evaluating the optimal operation and flexibility potential of end-users," Applied Energy, Elsevier, vol. 282(PB).
    15. Olman Araya Mejías & Cristina Montalvo & Agustín García-Berrocal & María Cubillo & Daniel Gordaliza, 2021. "Energy Savings after Comprehensive Renovations of the Building: A Case Study in the United Kingdom and Italy," Energies, MDPI, vol. 14(20), pages 1-18, October.
    16. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    17. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    18. Long Xue & Qianyu Zhang & Xuemang Zhang & Chengyu Li, 2022. "Can Digital Transformation Promote Green Technology Innovation?," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    19. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4860-:d:611211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.