IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223020157.html
   My bibliography  Save this article

Modeling of a bidirectional substation in a district heating network: Validation, dynamic analysis, and application to a solar prosumer

Author

Listed:
  • Dino, Giuseppe Edoardo
  • Catrini, Pietro
  • Buscemi, Alessandro
  • Piacentino, Antonio
  • Palomba, Valeria
  • Frazzica, Andrea

Abstract

Thermal grids will play a key role in the development of local energy communities and the achievement of 100% renewable societies. Such systems allow excess heat produced by distributed producers through renewable energy sources (also referred to as “thermal prosumers”) to be shared among other consumers characterized by high heat demand or who still depend on fossil fuels. However, to achieve more reliable results when performing energy analyses, it is of utmost importance to develop models of prosumers’ substations, where technical details (e.g., type of connections, heat exchangers, valves, etc.) and controllers are accounted for. Starting from the layout of a bidirectional substation for a thermal energy network proposed in the literature, this paper proposes a dynamic model that replicates the experimental setup in the TRNSYS environment. Validation results show a good matching between simulation and experiments in terms of dynamic behavior and energy balance. To show the capabilities of the proposed model, a prosumer with heat available from 205 m2 solar thermal collectors is considered as a case study. The analysis is performed by assuming two locations characterized by different irradiation values, i.e., Palermo (Italy) and Berlin (Germany). The results show that exchanging the excess heat produced on-site with a heating network allows the solar collectors to reach peak heat production, which is 130 kW and 110 kW for Palermo and Berlin, respectively. The surplus heat sold to the network is equal to 66% and 29% of the total energy exchange within the substation for Palermo and Berlin, respectively. Conversely, the self-consumption of the produced heat accounts for 21.2% and 30.6%, respectively. The model prospectively represents a valuable tool to develop feasibility studies in Thermal Energy Communities and assess the potential of innovative energy- and cost-effective operation strategies.

Suggested Citation

  • Dino, Giuseppe Edoardo & Catrini, Pietro & Buscemi, Alessandro & Piacentino, Antonio & Palomba, Valeria & Frazzica, Andrea, 2023. "Modeling of a bidirectional substation in a district heating network: Validation, dynamic analysis, and application to a solar prosumer," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020157
    DOI: 10.1016/j.energy.2023.128621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danhong Wang & Jan Carmeliet & Kristina Orehounig, 2021. "Design and Assessment of District Heating Systems with Solar Thermal Prosumers and Thermal Storage," Energies, MDPI, vol. 14(4), pages 1-27, February.
    2. Moallemi, A. & Arabkoohsar, A. & Pujatti, F.J.P. & Valle, R.M. & Ismail, K.A.R., 2019. "Non-uniform temperature district heating system with decentralized heat storage units, a reliable solution for heat supply," Energy, Elsevier, vol. 167(C), pages 80-91.
    3. Bürger, Veit & Steinbach, Jan & Kranzl, Lukas & Müller, Andreas, 2019. "Third party access to district heating systems - Challenges for the practical implementation," Energy Policy, Elsevier, vol. 132(C), pages 881-892.
    4. Kauko, Hanne & Kvalsvik, Karoline Husevåg & Rohde, Daniel & Nord, Natasa & Utne, Åmund, 2018. "Dynamic modeling of local district heating grids with prosumers: A case study for Norway," Energy, Elsevier, vol. 151(C), pages 261-271.
    5. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    6. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    7. Mendes, Gonçalo & Ioakimidis, Christos & Ferrão, Paulo, 2011. "On the planning and analysis of Integrated Community Energy Systems: A review and survey of available tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4836-4854.
    8. Lanka Horstink & Julia M. Wittmayer & Kiat Ng & Guilherme Pontes Luz & Esther Marín-González & Swantje Gährs & Inês Campos & Lars Holstenkamp & Sem Oxenaar & Donal Brown, 2020. "Collective Renewable Energy Prosumers and the Promises of the Energy Union: Taking Stock," Energies, MDPI, vol. 13(2), pages 1-30, January.
    9. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    10. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    11. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    12. Yang, Xiaochen & Li, Hongwei & Svendsen, Svend, 2016. "Decentralized substations for low-temperature district heating with no Legionella risk, and low return temperatures," Energy, Elsevier, vol. 110(C), pages 65-74.
    13. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    14. Bünning, Felix & Wetter, Michael & Fuchs, Marcus & Müller, Dirk, 2018. "Bidirectional low temperature district energy systems with agent-based control: Performance comparison and operation optimization," Applied Energy, Elsevier, vol. 209(C), pages 502-515.
    15. Revesz, Akos & Jones, Phil & Dunham, Chris & Davies, Gareth & Marques, Catarina & Matabuena, Rodrigo & Scott, Jim & Maidment, Graeme, 2020. "Developing novel 5th generation district energy networks," Energy, Elsevier, vol. 201(C).
    16. Licklederer, Thomas & Hamacher, Thomas & Kramer, Michael & Perić, Vedran S., 2021. "Thermohydraulic model of Smart Thermal Grids with bidirectional power flow between prosumers," Energy, Elsevier, vol. 230(C).
    17. Gross, Michel & Karbasi, Babak & Reiners, Tobias & Altieri, Lisa & Wagner, Hermann-Josef & Bertsch, Valentin, 2021. "Implementing prosumers into heating networks," Energy, Elsevier, vol. 230(C).
    18. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Li, Haoran & Hou, Juan & Tian, Zhiyong & Hong, Tianzhen & Nord, Natasa & Rohde, Daniel, 2022. "Optimize heat prosumers' economic performance under current heating price models by using water tank thermal energy storage," Energy, Elsevier, vol. 239(PB).
    3. Paolo Sdringola & Mattia Ricci & Maria Alessandra Ancona & Federico Gianaroli & Cristina Capodaglio & Francesco Melino, 2023. "Modelling a Prototype of Bidirectional Substation for District Heating with Thermal Prosumers," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    4. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    5. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    6. Abdelsalam, Mohamed Y. & Friedrich, Kelton & Mohamed, Saber & Chebeir, Jorge & Lakhian, Vickram & Sullivan, Brendan & Abdalla, Ahmed & Van Ryn, Jessica & Girard, Jeffrey & Lightstone, Marilyn F. & Buc, 2023. "Integrated community energy and harvesting systems: A climate action strategy for cold climates," Applied Energy, Elsevier, vol. 346(C).
    7. Min-Hwi Kim & Deuk-Won Kim & Dong-Won Lee & Jaehyeok Heo, 2021. "Experimental Analysis of Bi-Directional Heat Trading Operation Integrated with Heat Prosumers in Thermal Networks," Energies, MDPI, vol. 14(18), pages 1-18, September.
    8. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Giuseppe Edoardo Dino & Pietro Catrini & Valeria Palomba & Andrea Frazzica & Antonio Piacentino, 2023. "Promoting the Flexibility of Thermal Prosumers Equipped with Heat Pumps to Support Power Grid Management," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    10. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    11. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    12. Ieva Pakere & Dagnija Blumberga & Anna Volkova & Kertu Lepiksaar & Agate Zirne, 2023. "Valorisation of Waste Heat in Existing and Future District Heating Systems," Energies, MDPI, vol. 16(19), pages 1-22, September.
    13. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    14. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    15. Abugabbara, Marwan & Lindhe, Jonas & Javed, Saqib & Johansson, Dennis & Claesson, Johan, 2024. "Comparative study and validation of a new analytical method for hydraulic modelling of bidirectional low temperature networks," Energy, Elsevier, vol. 296(C).
    16. Ivan Postnikov & Ekaterina Samarkina & Andrey Penkovskii & Vladimir Kornev & Denis Sidorov, 2023. "Modeling Unpredictable Behavior of Energy Facilities to Ensure Reliable Operation in a Cyber-Physical System," Energies, MDPI, vol. 16(19), pages 1-11, October.
    17. Licklederer, Thomas & Zinsmeister, Daniel & Lukas, Lorenz & Speer, Fabian & Hamacher, Thomas & Perić, Vedran S., 2024. "Control of bidirectional prosumer substations in smart thermal grids: A weighted proportional-integral control approach," Applied Energy, Elsevier, vol. 354(PA).
    18. Lee, Minwoo & Han, Changho & Kwon, Soonbum & Kim, Yongchan, 2023. "Energy and cost savings through heat trading between two massive prosumers using solar and ground energy systems connected to district heating networks," Energy, Elsevier, vol. 284(C).
    19. Anna Grzegórska & Piotr Rybarczyk & Valdas Lukoševičius & Joanna Sobczak & Andrzej Rogala, 2021. "Smart Asset Management for District Heating Systems in the Baltic Sea Region," Energies, MDPI, vol. 14(2), pages 1-25, January.
    20. Hou, Juan & Li, Haoran & Nord, Natasa & Huang, Gongsheng, 2023. "Model predictive control for a university heat prosumer with data centre waste heat and thermal energy storage," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.