IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920310552.html
   My bibliography  Save this article

Peak load reduction and load shaping in HVAC and refrigeration systems in commercial buildings by using a novel lightweight dynamic priority-based control strategy

Author

Listed:
  • Winstead, Christopher
  • Bhandari, Mahabir
  • Nutaro, James
  • Kuruganti, Teja

Abstract

Reducing peak power demand in a building can reduce electricity expenses for the building owner and contribute to the efficiency and reliability of the electrical power grid. For the building owner, reduced expenses come from the reduction or elimination of peak power charges on electricity bills. For the power system operator, reducing peak power demand leads to a more predictable load profile and reduces stress on the electric grid system. We present a computationally inexpensive, dynamic, and retrofit-deployable control strategy to effect peak load reduction and load shaping. The effectiveness of the control strategy is examined in a simulation with 80 air-conditioning units and 40 refrigeration units. The results show that a peak demand reduction of 60 kW can be achieved relative to peak demand in a typical set point–based approach. The proposed strategy was deployed in a gymnasium building with four rooftop HVAC units, where it showed over 15% peak demand (kW) reduction savings while maintaining or lowering energy consumption (in kilowatt-hours) relative to the set point–based thermostat controls.

Suggested Citation

  • Winstead, Christopher & Bhandari, Mahabir & Nutaro, James & Kuruganti, Teja, 2020. "Peak load reduction and load shaping in HVAC and refrigeration systems in commercial buildings by using a novel lightweight dynamic priority-based control strategy," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310552
    DOI: 10.1016/j.apenergy.2020.115543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Yue & Wang, Chengshan & Wu, Jianzhong & Wang, Jidong & Cheng, Meng & Li, Gen, 2017. "Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market," Applied Energy, Elsevier, vol. 188(C), pages 456-465.
    2. Lakshmanan, Venkatachalam & Marinelli, Mattia & Hu, Junjie & Bindner, Henrik W., 2016. "Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark," Applied Energy, Elsevier, vol. 173(C), pages 470-480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Zhuang & Pan, Jia & Huang, Gongsheng & Luo, Xiaowei, 2022. "A bottom-up intra-hour proactive scheduling of thermal appliances for household peak avoiding based on model predictive control," Applied Energy, Elsevier, vol. 323(C).
    2. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    2. Kai Ma & Chenliang Yuan & Jie Yang & Zhixin Liu & Xinping Guan, 2017. "Switched Control Strategies of Aggregated Commercial HVAC Systems for Demand Response in Smart Grids," Energies, MDPI, vol. 10(7), pages 1-18, July.
    3. Bomela, Walter & Zlotnik, Anatoly & Li, Jr-Shin, 2018. "A phase model approach for thermostatically controlled load demand response," Applied Energy, Elsevier, vol. 228(C), pages 667-680.
    4. Song, Yuguang & Chen, Fangjian & Xia, Mingchao & Chen, Qifang, 2022. "The interactive dispatch strategy for thermostatically controlled loads based on the source–load collaborative evolution," Applied Energy, Elsevier, vol. 309(C).
    5. Diaz, Cesar & Ruiz, Fredy & Patino, Diego, 2017. "Modeling and control of water booster pressure systems as flexible loads for demand response," Applied Energy, Elsevier, vol. 204(C), pages 106-116.
    6. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    7. Ryan S. Montrose & John F. Gardner & Aykut C. Satici, 2021. "Centralized and Decentralized Optimal Control of Variable Speed Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-18, July.
    8. Xiaolin Ayón & María Ángeles Moreno & Julio Usaola, 2017. "Aggregators’ Optimal Bidding Strategy in Sequential Day-Ahead and Intraday Electricity Spot Markets," Energies, MDPI, vol. 10(4), pages 1-20, April.
    9. Krkoleva Mateska, Aleksandra & Borozan, Vesna & Krstevski, Petar & Taleski, Rubin, 2018. "Controllable load operation in microgrids using control scheme based on gossip algorithm," Applied Energy, Elsevier, vol. 210(C), pages 1336-1346.
    10. Zhong, Shengyuan & Wang, Xiaoyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Wang, Yongzhen & Deng, Shuai & Zhu, Jiebei, 2021. "Deep reinforcement learning framework for dynamic pricing demand response of regenerative electric heating," Applied Energy, Elsevier, vol. 288(C).
    11. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    12. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    13. Malik, Anam & Ravishankar, Jayashri, 2018. "A hybrid control approach for regulating frequency through demand response," Applied Energy, Elsevier, vol. 210(C), pages 1347-1362.
    14. Adhikari, Rajendra & Pipattanasomporn, M. & Rahman, S., 2018. "An algorithm for optimal management of aggregated HVAC power demand using smart thermostats," Applied Energy, Elsevier, vol. 217(C), pages 166-177.
    15. Oshnoei, Arman & Kheradmandi, Morteza & Blaabjerg, Frede & Hatziargyriou, Nikos D. & Muyeen, S.M. & Anvari-Moghaddam, Amjad, 2022. "Coordinated control scheme for provision of frequency regulation service by virtual power plants," Applied Energy, Elsevier, vol. 325(C).
    16. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    17. Chassin, David P. & Behboodi, Sahand & Shi, Yang & Djilali, Ned, 2017. "H2-optimal transactive control of electric power regulation from fast-acting demand response in the presence of high renewables," Applied Energy, Elsevier, vol. 205(C), pages 304-315.
    18. Kong, Xiangyu & Kong, Deqian & Yao, Jingtao & Bai, Linquan & Xiao, Jie, 2020. "Online pricing of demand response based on long short-term memory and reinforcement learning," Applied Energy, Elsevier, vol. 271(C).
    19. Wang, Yu & Xu, Yan & Tang, Yi, 2019. "Distributed aggregation control of grid-interactive smart buildings for power system frequency support," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Diaz-Londono, Cesar & Enescu, Diana & Ruiz, Fredy & Mazza, Andrea, 2020. "Experimental modeling and aggregation strategy for thermoelectric refrigeration units as flexible loads," Applied Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.