IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016221.html
   My bibliography  Save this article

A novel solar system for photothermal-assisted electrocatalytic nitrate reduction reaction to ammonia

Author

Listed:
  • Xu, Haiyang
  • Zhang, Le
  • Wei, ShengJie
  • Tong, Xuan
  • Yang, Yue
  • Ji, Xu

Abstract

The traditional Haber-Bosch process for ammonia synthesis is plagued by high energy consumption and significant CO2 emissions, leading to a noticeable environmental impact. As a promising solution, solar photovoltaic electrocatalytic synthesis of ammonia has garnered significant attention. This study designed an electrocatalytic nitrite reduction system for ammonia production that employs solar photothermal-assisted and investigate the effects of different photovoltaic power supply voltage, heating temperatures, and flow velocities. The results demonstrate. the maximum ammonia production performance was achieved at 1.3 V under normal temperature conditions, resulting in a maximum current density and ammonia production rate of 26 mA cm−2 and 1422.4 μg, respectively. Upon heating to 40 °C, the maximum average current density of the system is 40 mA cm−2, and ammonia production is 2293 μg, representing 53.8 % and 61.2 % increasing in comparison to ambient temperatures. Although elevating the temperature to 60 °C led to increased average current density and ammonia production, the system's stability decreased to certain extent. Cyclic electrolysis conducted at 1.1 V and 40 °C for an hour revealed that ammonia production is 553.2 μg, 957.8 μg, 714.6 μg for flow rates of 10 mL/min, 20 mL/min, and 40 mL/min, respectively. These findings provide a reliable reference for implementing solar energy as a power source in ammonia synthesis.

Suggested Citation

  • Xu, Haiyang & Zhang, Le & Wei, ShengJie & Tong, Xuan & Yang, Yue & Ji, Xu, 2024. "A novel solar system for photothermal-assisted electrocatalytic nitrate reduction reaction to ammonia," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016221
    DOI: 10.1016/j.renene.2023.119707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Jingyang & Ji, Xu & Xu, Haiyang & Heng, Yuanyuan & Wang, Cong & Deng, Jia, 2020. "Solar vaporizing desalination by heat concentration," Renewable Energy, Elsevier, vol. 154(C), pages 201-208.
    2. Zhen-Yu Wu & Mohammadreza Karamad & Xue Yong & Qizheng Huang & David A. Cullen & Peng Zhu & Chuan Xia & Qunfeng Xiao & Mohsen Shakouri & Feng-Yang Chen & Jung Yoon (Timothy) Kim & Yang Xia & Kimberly , 2021. "Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Hu, Tianxiang & Kwan, Trevor Hocksun & Pei, Gang, 2022. "An all-day cooling system that combines solar absorption chiller and radiative cooling," Renewable Energy, Elsevier, vol. 186(C), pages 831-844.
    4. Suzanne Z. Andersen & Viktor Čolić & Sungeun Yang & Jay A. Schwalbe & Adam C. Nielander & Joshua M. McEnaney & Kasper Enemark-Rasmussen & Jon G. Baker & Aayush R. Singh & Brian A. Rohr & Michael J. St, 2019. "Author Correction: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements," Nature, Nature, vol. 574(7777), pages 5-5, October.
    5. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    6. McColl, Stuart J. & Rodgers, Peter & Eveloy, Valerie, 2015. "Thermal management of solar photovoltaics modules for enhanced power generation," Renewable Energy, Elsevier, vol. 82(C), pages 14-20.
    7. Boulamanti, Aikaterini & Moya, Jose A., 2017. "Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1205-1212.
    8. Chen, Yingxu & Ji, Xu & Lv, Guanchao & Jia, Yicong & Yang, Bianfeng & Han, Jingyang, 2023. "Study on compound parabolic concentrating vaporized desalination system with preheating and heat recovery," Energy, Elsevier, vol. 276(C).
    9. Suzanne Z. Andersen & Viktor Čolić & Sungeun Yang & Jay A. Schwalbe & Adam C. Nielander & Joshua M. McEnaney & Kasper Enemark-Rasmussen & Jon G. Baker & Aayush R. Singh & Brian A. Rohr & Michael J. St, 2019. "A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements," Nature, Nature, vol. 570(7762), pages 504-508, June.
    10. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia-Yi Fang & Qi-Zheng Zheng & Yao-Yin Lou & Kuang-Min Zhao & Sheng-Nan Hu & Guang Li & Ouardia Akdim & Xiao-Yang Huang & Shi-Gang Sun, 2022. "Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Huize Wang & Ranga Rohit Seemakurthi & Gao-Feng Chen & Volker Strauss & Oleksandr Savateev & Guangtong Hai & Liangxin Ding & Núria López & Haihui Wang & Markus Antonietti, 2023. "Laser-induced nitrogen fixation," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Srivastava, Nitish & Saquib, Mohammad & Rajput, Pramod & Bhosale, Amit C. & Singh, Rhythm & Arora, Pratham, 2023. "Prospects of solar-powered nitrogenous fertilizers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Doris Segets & Corina Andronescu & Ulf-Peter Apfel, 2023. "Accelerating CO2 electrochemical conversion towards industrial implementation," Nature Communications, Nature, vol. 14(1), pages 1-5, December.
    5. Chen, Yingxu & Ji, Xu & Yang, Bianfeng & Jia, Yicong & Wang, Mengqi, 2024. "Performance enhancement of compound parabolic concentrating vaporized desalination system by spraying and steam heat recovery," Renewable Energy, Elsevier, vol. 220(C).
    6. Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xianbiao Fu & Aoni Xu & Jakob B. Pedersen & Shaofeng Li & Rokas Sažinas & Yuanyuan Zhou & Suzanne Z. Andersen & Mattia Saccoccio & Niklas H. Deissler & Jon Bjarke Valbæk Mygind & Jakob Kibsgaard & Pet, 2024. "Phenol as proton shuttle and buffer for lithium-mediated ammonia electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Po-Wei Huang & Marta C. Hatzell, 2022. "Prospects and good experimental practices for photocatalytic ammonia synthesis," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Paul A. Kempler & Adam C. Nielander, 2023. "Reliable reporting of Faradaic efficiencies for electrocatalysis research," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    10. Rao, Xufeng & Liu, Minmin & Chien, Meifang & Inoue, Chihiro & Zhang, Jiujun & Liu, Yuyu, 2022. "Recent progress in noble metal electrocatalysts for nitrogen-to-ammonia conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Jiabao Lv & Ang Cao & Yunhao Zhong & Qingyang Lin & Xiaodong Li & Hao Bin Wu & Jianhua Yan & Angjian Wu, 2024. "Promoting the OH cycle on an activated dynamic interface for electrocatalytic ammonia synthesis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Jong-Hoon Kim & Tian-Yi Dai & Mihyun Yang & Jeong-Min Seo & Jae Seong Lee & Do Hyung Kweon & Xing-You Lang & Kyuwook Ihm & Tae Joo Shin & Gao-Feng Han & Qing Jiang & Jong-Beom Baek, 2023. "Achieving volatile potassium promoted ammonia synthesis via mechanochemistry," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    14. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    15. Jian Zhang & Thomas Quast & Bashir Eid & Yen-Ting Chen & Ridha Zerdoumi & Stefan Dieckhöfer & João R. C. Junqueira & Sabine Seisel & Wolfgang Schuhmann, 2024. "In-situ electrochemical reconstruction and modulation of adsorbed hydrogen coverage in cobalt/ruthenium-based catalyst boost electroreduction of nitrate to ammonia," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Ma, Xiaojing & Xu, Jinliang & Xie, Jian, 2021. "In-situ phase separation to improve phase change heat transfer performance," Energy, Elsevier, vol. 230(C).
    17. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    18. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Gillard, Jonathon & Patchigolla, Kumar, 2022. "Thermo-economic analysis, optimisation and systematic integration of supercritical carbon dioxide cycle with sensible heat thermal energy storage for CSP application," Energy, Elsevier, vol. 238(PB).
    19. Wang, Xiaohe & Liu, Qibin & Bai, Zhang & Lei, Jing & Jin, Hongguang, 2018. "Thermodynamic investigations of the supercritical CO2 system with solar energy and biomass," Applied Energy, Elsevier, vol. 227(C), pages 108-118.
    20. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.